精英家教网 > 高中数学 > 题目详情

【题目】已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如图),
求证:
(1)对角线AC、BD是异面直线;
(2)直线EF和HG必交于一点,且交点在AC上.

【答案】
(1)证明:假设对角线AC、BD在同一平面α内,

则A、B、C、D都在平面α内,这与ABCD是空间四边形矛盾,

∴AC、BD是异面直线.


(2)证明:∵E、H分别是AB、AD的中点,∴EH BD.

又F、G分别是BC、DC的三等分点,

∴FG BD.∴EH∥FG,且EH<FG.

∴FE与GH相交.

设交点为O,又O在GH上,GH在平面ADC内,∴O在平面ADC内.

同理,O在平面ABC内.

从而O在平面ADC与平面ABC的交线AC上.


【解析】(1)利用反证法证明对角线AC、BD是共面直线,推出矛盾,从而证明是异面直;(2)说明直线EF和HG必交于一点,然后证明这点在平面ADC内.又在平面ABC内,必在它们的交线AC上.
【考点精析】认真审题,首先需要了解平面的基本性质及推论(如果一条直线上的两点在一个平面内,那么这条直线在此平面内;过不在一条直线上的三点,有且只有一个平面;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线),还要掌握异面直线的判定(过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线))的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线 经过 两点,那么直线 的倾斜角的取值范围(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB1上一点,且平面DA1C⊥平面AA1C1C.
(1)求证:D点为棱BB1的中点;
(2)判断四棱锥A1﹣B1C1CD和C﹣A1ABD的体积是否相等,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . 

(Ⅰ)当时,求函数的极值;

(Ⅱ)当时,讨论函数单调性;

(Ⅲ)是否存在实数,对任意的 ,且,有恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1+3a2+32a3+…+3n1an= (n∈N*).
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.

(1)求椭圆的方程;

(2)点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点, 的延长线与椭圆交于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是(  )
A.(RM)∩N=
B.M∪N=R
C.MN
D.(RM)∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定圆C半径为2,A为圆C上的一个定点,B为圆C上的动点,若点A,B,C不共线,且| | |对任意t∈(0,+∞)恒成立,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

(1)若,问是否存在使;

(2)对于任意的,是否一定有?并证明你的结论.

查看答案和解析>>

同步练习册答案