【题目】【2017届云南省云南师范大学附属中学高三高考适应性月考(五)文数】已知函数.
(1)若曲线在点处的切线斜率为1,求函数的单调区间;
(2)若时,恒成立,求实数的取值范围.
【答案】(Ⅰ)证明过程见解析;(Ⅱ).
【解析】
试题分析:(Ⅰ)根据曲线在点处的切线斜率为1,可求出参数的值,再对导函数的零点进行分类讨论,即可求出函数的单调区间;(Ⅱ)由,构造辅助函数,再对进行求导,讨论的取值范围,利用函数单调性判断函数的最值,进而确定的取值范围.
试题解析:(Ⅰ)∵∴∴,
∴,记∴,
当x<0时, 单减;
当x>0时,单增,
∴,
故恒成立,所以在上单调递增.
(Ⅱ)∵,令∴,
当时,∴在上单增,∴.
i)当即时,恒成立,即∴在上单增,
∴,所以.
ii)当即时,∵在上单增,且,
当时,,
∴使,即.
当时,,即单减;
当时,,即单增.
∴,
∴,由∴.
记,
∴∴在上单调递增,
∴∴.
综上,.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)某公司为了解广告投入对销售收益的影响,在若干地区各投入 万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示与之间存在线性相关关系,求关于的回归方程;
(Ⅲ)若广告投入万元时,实际销售收益为.万元,求残差.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·哈尔滨高二检测)如图,下列四个几何体中,它们的三视图(正视图、俯视图、侧视图)有且仅有两个相同,而另一个不同的两个几何体是________.
(1)棱长为2的正方体 (2)底面直径和高均为2的圆柱
(3)底面直径和高
均为2的圆锥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县城出租车的收费标准是:起步价是元(乘车不超过千米);行驶千米后,每千米车费1.2元;行驶千米后,每千米车费1.8元.
(1)写出车费与路程的关系式;
(2)一顾客计划行程千米,为了省钱,他设计了三种乘车方案:
①不换车:乘一辆出租车行千米;
②分两段乘车:先乘一辆车行千米,换乘另一辆车再行千米;
③分三段乘车:每乘千米换一次车.
问哪一种方案最省钱.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
设椭圆的离心率为,其左焦点与抛物线的焦点相同.
(1)求此椭圆的方程;
(2)若过此椭圆的右焦点的直线与曲线只有一个交点,则
①求直线的方程;
②椭圆上是否存在点,使得,若存在,请说明一共有几个点;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;
(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校数学系2016年高等代数试题有6个题库,其中3个是新题库(即没有用过的题库),3个是旧题库(即至少用过一次的题库),每次期末考试任意选择2个题库里的试题考试.
(1)设2016年期末考试时选到的新题库个数为,求的分布列和数学期望;
(2)已知2016年时用过的题库都当作旧题库,求2017年期末考试时恰好到1个新题库的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com