精英家教网 > 高中数学 > 题目详情
17.若函数f(x)为定义在R上的偶函数,当x>0时,xf′(x)+f(x)>0,且f(1)=0,则不等式lgx•f(lgx)<0的解集为(0,$\frac{1}{10}$)∪(1,10).

分析 由题意构造函数g(x)=xf (x),再由导函数的符号判断出函数g(x)的单调性,由函数f(x)的奇偶性得到函数g(x)的奇偶性,由f(1)=0得g(1)=0、还有g(-1)=0,再通过奇偶性进行转化,利用单调性求出不等式得解集.

解答 解:设g(x)=xf(x),
则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=f(x)+xf′(x)>0恒成立,
∴函数g(x)在区间(0,+∞)上是增函数,
∵f(x)是定义在R上的偶函数,∴g(x)=xf(x)是R上的奇函数,
∴函数g(x)在区间(-∞,0)上是增函数,
∵f(1)=0,∴f(-1)=0;  即g(-1)=0,g(1)=0
lgx•f(lgx)<0化为g(lgx)<g(1),或g(lgx)<g(-1),
∴0<x<$\frac{1}{10}$或1<x<10,
故答案为:(0,$\frac{1}{10}$)∪(1,10).

点评 本题考查了由条件构造函数和用导函数的符号判断函数的单调性,利用函数的单调性和奇偶性的关系对不等式进行转化,注意函数值为零的自变量的取值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知$\frac{3π}{4}$<α<π,tanα+$\frac{1}{tanα}$=-$\frac{10}{3}$.
(1)求tanα的值;
(2)求g(α)=$\frac{sin(π+α)+4cos(2π-α)}{sin(\frac{π}{2}-α)-4sin(-α)}$的值.
(3)若β,γ均为锐角,tanγ=$\sqrt{3}$(m-3tanα),$\sqrt{3}$(tanγtanβ+m)+tanβ=0,求β+γ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值为1,则a等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an},其前n项和Sn满足6Sn=an2+3an+2,且a1,a2,a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn,n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知m,n为两条不同的直线,α,β为两个不重合的平面,给出下列命题:
①若m⊥α,n⊥α,则m∥n;
②若m⊥α,m⊥n,则n∥α;
③若α⊥β,m∥α,则m⊥β;
④若m⊥α,m∥β,则α⊥β;
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=ex-x-3(x>0)的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在四面体P-ABC中,PA、AB、BC两两垂直,且AB=$\sqrt{6}$,BC=$\sqrt{2}$,则二面角B-AP-C的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三棱锥A-BCD中,AC=BD=BC=AD=$\sqrt{5}$,AB=DC=$\sqrt{2}$,则该三棱锥外接球的体积为$\sqrt{6}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°.
(Ⅰ)求证:平面A1BD⊥平面A1AC;
(Ⅱ)若BD=$\sqrt{2}{A_1}$D=2,求平面A1BD与平面B1BD所成角的大小.

查看答案和解析>>

同步练习册答案