精英家教网 > 高中数学 > 题目详情
9.已知点P的极坐标为(ρ,θ),其中ρ=1,θ∈R,求满足上述条件的点P的位置.

分析 利用$ρ=\sqrt{{x}^{2}+{y}^{2}}$即可得出.

解答 解:设点P的直角坐标为(x,y),
∵ρ=1,
∴x2+y2=1(θ∈R),
∴点P在以原点为圆心,1为半径的圆上.

点评 本题考查了直角坐标与极坐标的互化方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=2sin(ωx+φ)(ω>0,且|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的单调递增区间是[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ],(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.把下列极坐标方程化成直角坐标方程.
(1)ρ=$\frac{5}{cosθ}$;
(2)ρ(2cosθ-5sinθ)-3=0;
(3)ρ+$\frac{6cotθ}{sinθ}$=0;
(4)ρ=$\frac{6}{1-2cosθ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式:$\frac{x-3}{2-x}$≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解不等式:|$\frac{x}{1-x}$|>$\frac{x}{1-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式$\frac{x-2}{{x}^{2}-1}$<0的解集为{x|x<-1或1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式$\frac{x-a}{x-{a}^{2}}$<0的解集是a=0或1,∅;0<a<1,(a2,a);a>1或a<0,(a,a2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=$\frac{1+\frac{x}{2}}{\sqrt{{x}^{2}+x+1}}$(x≤-1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α,β满足1+cosα-sinβ+sinαsinβ=0,1-cosα-cosβ+sinαcosβ=0,则sinα的值为(  )
A.$\frac{1-\sqrt{10}}{3}$B.$\frac{\sqrt{10}-1}{3}$C.$\frac{1+\sqrt{10}}{7}$D.-$\frac{1+\sqrt{10}}{3}$

查看答案和解析>>

同步练习册答案