精英家教网 > 高中数学 > 题目详情
(2012•广安二模)甲、乙两人各进行3次射击,甲每次击中目标的概率为
1
2
,乙每次击中目标的概率为
2
3

求:
(1)记甲击中目标2次的概率;
(2)甲恰好比乙多击中目标2次的概率.
分析:(1)根据题意,甲射击三次,击中目标2次,即三次独立重复实验中恰有两次发生,由n次独立重复实验中恰有k次发生的概率公式计算可得答案;
(2)记甲恰好比乙多击中目标2次为事件A,分析可得A包括两个事件,①甲击中2次而乙击中0次,②甲击中3次而乙击中1次,由独立事件的概率乘法公式计算可得两个事件的概率,进而由互斥事件概率的加法公式,将其相加即可得答案.
解答:解:(1)甲射击三次,击中目标2次,即三次独立重复实验中恰有两次发生,
其概率为P=C32
1
2
3=
3
8

(2)记甲恰好比乙多击中目标2次为事件A,
分析可得A包括两个事件,①甲击中2次而乙击中0次,记为事件B1,②甲击中3次而乙击中1次,记为事件B2
则P(A)=P(B1)+P(B2)=C32
1
2
3×C30(1-
2
3
3+C33
1
2
3×C31×
2
3
×(1-
2
3
2=
3
8
×
1
27
+
1
8
×
2
9
=
1
24
点评:本题考查互斥事件、相互独立事件的概率计算,解(2)的关键是分析甲恰好比乙多击中目标2次包含的事件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广安二模)将函数y=cos(x-
π
3
)
的图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移
π
6
个单位,所得函数的图象的一条对称轴为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广安二模)设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(1)若x1=-1,x2=2,求函数f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值..

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广安二模)已知A(3,
3
),O为原点,点P(x,y)的坐标满足
3
x-y≤0
x-
3
y+2≥0
y≥0
,则
OA
OP
|
OA
|
取最大值时点P的坐标是
(1,
3
(1,
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广安二模)设全集U={-1,0,1,2,3,4,5},A={1,2,5},B={0,1,2,3},则B∩(CUA)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广安二模)已知函数f(x)=
1
1-x2
(x<-1)
,则f-1(-
1
8
)
=(  )

查看答案和解析>>

同步练习册答案