精英家教网 > 高中数学 > 题目详情
已知x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,则实数m的取值范围(  )
A、m≥4或m≤-2
B、m≥2或m≤-4
C、-4<m<2
D、-2<m<4
分析:先把x+2y转会为(x+2y)(
2
x
+
1
y
)展开后利用基本不等式求得其最小值,然后根据x+2y>m2+2m求得m2+2m<8,进而求得m的范围.
解答:解:∵
2
x
+
1
y
=1

∴x+2y=(x+2y)(
2
x
+
1
y
)=4+
4y
x
+
x
y
≥4+2
4
=8
∵x+2y>m2+2m恒成立,
∴m2+2m<8,求得-4<m<2
故选C
点评:本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>0,y>0且x+y=xy,则x+y的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:013

(2007宁夏,7)已知x0y0xaby成等差数列,xcdy成等比数列,则的最小值是

[  ]

A0

B1

C2

D4

查看答案和解析>>

科目:高中数学 来源:安徽省合肥八中2012届高三第三次段考数学理科试题 题型:013

已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是

[  ]
A.

0

B.

1

C.

2

D.

4

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一下学期第7周周练数学试卷(解析版) 题型:选择题

已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是(  ) A.0  B.1  C.2  D.4

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知集合M={(x,y)|x+y=1},映射f:M→N,在f作用下点(x,y)的象是(2x,2y),则集合N=


  1. A.
    {(x,y)|x+y=2,x>0,y>0}
  2. B.
    {(x,y)|xy=1,x>0,y>0}
  3. C.
    {(x,y)|xy=2,x<0,y<0}
  4. D.
    {(x,y)|xy=2,x>0,y>0}

查看答案和解析>>

同步练习册答案