精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在直三棱柱中, ,点分别是的中点.

(1)求证: ∥平面

(2)若,求证: .

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)先根据平面几何知识证明四边形是平行四边形,得.再根据线面平行判定定理得结论(2)先根据直三棱柱性质得,再根据等腰三角形性质得,由线面垂直判定定理得侧面.即得.再由已知,证得平面,即得结论

试题解析:证明:(1)因为是直三棱柱,所以,且

又点分别是的中点,所以,且

所以四边形是平行四边形,从而

平面 平面,所以∥面

(2)因为是直三棱柱,所以底面,而侧面

所以侧面底面

,且的中点,所以

则由侧面底面,侧面底面

,且底面,得侧面

侧面,所以

平面,且

所以平面

平面,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在抛物线y=x2与直线y=2围成的封闭图形内任取一点A,O为坐标原点,则直线OA被该封闭图形解得的线段长小于 的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l经过两直线l1:2x-y+4=0与l2:x-y+5=0的交点,且与直线x-2y-6=0垂直.

(1)求直线l的方程.

(2)若点P(a,1)到直线l的距离为,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E:y2=4x,设A、B是抛物线E上分别位于x轴两侧的两个动点,且 = (其中O为坐标原点)
(Ⅰ)求证:直线AB必过定点,并求出该定点Q的坐标;
(Ⅱ)过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是直角梯形的四棱锥S-ABCD中,.

(1)求四棱锥S-ABCD的体积;

(2)求证:面

(3)求SC与底面ABCD所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知 cosB+ cosA= (I)求∠C的大小;
(II)求sinB﹣ sinA的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中, 平面

的中点.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

求四面体的外接球的表面积.

(注:如果一个多面体的顶点都在球面上,那么常把该球称为多面体的外接球. 球的表面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为的正方体中,分别是的中点,过三点的平面与正方体的下底面相交于直线

(1)画出直线

(2)的长;

(3)求D到的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中生调查了当地某小区的50户居民由于台风造成的经济损失,将收集的数据分成三组,并作出如下频率分布直方图:

1)在直方图的经济损失分组中,以各组的区间中点值代表该组的各个值,并以经济损失落入该区间的频率作为经济损失取该区间中点值的概率(例如:经济损失则取,且的概率等于经济损失落入的频率)。现从当地的居民中随机抽出2户进行捐款援助,设抽出的2户的经济损失的和为,求的分布列和数学期望.

2)台风后居委会号召小区居民为台风重灾区捐款,此高中生调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

经济损失不超过4000元

经济损失超过4000元

合计

捐款超过500元

30

捐款不超过500元

6

合计

附:临界值表参考公式:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案