精英家教网 > 高中数学 > 题目详情

等比数列{an}中,若a1+a2=1,a3+a4=9,那么a4+a5等于


  1. A.
    27
  2. B.
    27或-27
  3. C.
    81
  4. D.
    81或-81
B
分析:根据等比数列的性质可知a3+a4与a1+a2的比值等于q2,把a1+a2=1,a3+a4=9代入即可求出q的值,然后利用等比数列的通项公式化简
a1+a2=1后,把q的值代入即可求出首项,然后利用首项和公比,利用等比数列的通项公式即可求出a4+a5的值.
解答:a3+a4=(a1+a2)•q2
∴q2=9,q=±3.
当q=-3时,a1+a2=a1+3a1=4a1=1,所以a1=,a4+a5=×(q3+q4)=27;
同理当q=3时,a4+a5=-27,
故选B
点评:此题考查学生掌握等比数列的性质,灵活运用等比数列的通项公式化简求值,是一道综合题.学生做题时应注意q的值有两解,不要遗漏了解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a2=18,a4=8,则公比q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,证明:Sn<n-ln(n+1);
(Ⅲ)设bn=an
9
10
n,证明:对任意的正整数n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a3=2,a7=32,则a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,an=2×3n-1,则由此数列的奇数项所组成的新数列的前n项和为
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知对n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步练习册答案