精英家教网 > 高中数学 > 题目详情
1.等差数列{an}中,S5=28,S10=36,则S15等于24.

分析 由等差数列的性质得S5,S10-S5,S15-S10成等差数列,由此能求出结果.

解答 解:∵等差数列{an}中,S5=28,S10=36,
由等差数列的性质得S5,S10-S5,S15-S10也成等差数列,
∴28,8,S15-36成等差数列,
∴2×8=28+S15-36,
则S15=24.
故答案为:24.

点评 本题考查等差数列的前15项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(cosα,-$\frac{1}{3}$)(0°<α<180°),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则角α为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线l1:ax+2y+6=0与直线l2:x+(a-1)y+(a2-1)=0平行而不重合,则a等于(  )
A.-1或2B.-1C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱锥E-ABD各个面均为直角三角形,且Rt△ADE的直角顶点为A,其中AE=AB,∠ABD=$\frac{π}{6}$,以AB为直径在平面ABD内画圆,且经过点D,任取圆上一点C(不与A,B两点重合).
(1)求证:△BCE为直径三角形;
(2)若四边形ABCE为一个等腰梯形,且BC=1,求几何体C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=$\frac{3}{2}$,2an+1=an+n+2
(1)证明数列{an-n}是等比数列;
(2)设bn=2nan,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若三点A(0,a,2b),B(2,3,4),C(3,4,5)共线,则下列等式成立的是(  )
A.2a=bB.a+b=2C.2a-b=3D.a-2b=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设奇函数f(x)(x∈R)在(-∞,0)内是减函数,且有f(2a2+a+1)<f(3a2-2a+1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知sin(π-α)=-$\frac{2}{5}$,且α是第四象限角,则tanα=(  )
A.$\frac{2\sqrt{21}}{21}$B.-$\frac{2\sqrt{21}}{21}$C.-$\frac{2}{3}$D.$\frac{\sqrt{21}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.当m为何值时,直线l1:(3m+1)x+(2-m)y-1=0与直线l2:(m-2)x+(m+3)y+2=0相互垂直?

查看答案和解析>>

同步练习册答案