精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为,(为参数),直线的普通方程为,设的交点为,当变化时,记点的轨迹为曲线. 在以原点为极点,轴正半轴为极轴的极坐标系中,直线的方程为.

1)求曲线的普通方程;

2)设点上,点上,若直线的夹角为,求的最大值.

【答案】1.(2

【解析】

1)将直线的参数方程转化为普通方程,联立的方程并消去,再根据直线斜率存在且不为零,即可得到曲线的普通方程;

2)先求出直线的普通方程,点到直线的距离为,由题意可得,求出到直线的距离的最大值,即可求出的最大值.

1)直线可化为:,代入

消去可得:

整理得:

由直线斜率存在且不为零,则

曲线的普通方程为:.

2)由,得

所以直线的普通方程为:

设点到直线的距离为

的夹角为,可得

的最大值可转化为点到直线的距离的最大值,

的最大值即圆心到直线的距离加上半径,

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数ab满足a2+b2-ab3

1)求a-b的取值范围;

2)若ab0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=﹣x3+1+axee是自然对数的底)与gx)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是(

A.[0e34]B.[02]

C.[2e34]D.[e34+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

1)当时,求函数的极值;

2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某超市2019年中的12个月的收入与支出数据的折线图如图所示,则下列说法中,错误的是( )

A.该超市在2019年的12个月中,7月份的收益最高;

B.该超市在2019年的12个月中,4月份的收益最低;

C.该超市在20197月至12月的总收益比21091月至6月的总收益增长了90万元;

D.该超市在20191月至6月的总收益低于21097月至12月的总收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上一点,点为抛物线的焦点,.

1)求直线的方程;

2)若直线与抛物线的另一个交点为,曲线在点与点处的切线分别为,直线相交于点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,的中点,E是棱上一动点.

(1)若E是棱的中点,证明:平面

(2)求二面角的余弦值;

(3)是否存在点E,使得,若存在,求出E的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗.经过引种实验发现,引种树苗的自然成活率为,引种树苗的自然成活率均为

1)任取树苗各一棵,估计自然成活的棵数为,求的分布列及其数学期望;

2)将(1)中的数学期望取得最大值时的值作为种树苗自然成活的概率.该农户决定引种种树苗,引种后没有自然成活的树苗有的树苗可经过人工栽培技术处理,处理后成活的概率为,其余的树苗不能成活.

①求一棵种树苗最终成活的概率;

②若每棵树苗引种最终成活可获利元,不成活的每棵亏损元,该农户为了获利期望不低于万元,问至少要引种种树苗多少棵?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的单调递增区间;

2)若函数有两个极值点恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案