精英家教网 > 高中数学 > 题目详情

【题目】如图,是两个小区所在地,到一条公路的垂直距离分别为两端之间的距离为.

1)某移动公司将在之间找一点,在处建造一个信号塔,使得的张角与的张角相等,试确定点的位置.

2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得所张角最大,试确定点的位置.

【答案】(1);(2

【解析】

试题(1)设,我们只要利用已知列出关于的方程即可,而这个方程就是在两个三角形中利用正切的定义,,因此有,解之得;实际上本题可用相似形知识求解,,则,由引开出方程解出;(2)要使得最大,可通过求,因为

,只要设,则都可用表示出来,从而把问题转化为求函数的最值,同(1)可得,这里我们用换元法求最值,令,则有,注意到可取负数,即为钝角,因此在取负值中的最小值时,取最大值.

1)设.

依题意有. 3

,得,解得,故点应选在距2. 6

2)设.

依题意有

10

,由,得

12

,所张的角为钝角,最大角当,即时取得,故点应选在距. 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数),.

(1)若对任意的,都有恒成立,试求m的取值范围;

(2)用表示mn中的最小值,设函数),讨论关于x的方程的实数解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),=0,(x1≠x2),|x2-x1min,f(x)=f(-x),将函数f(x)的图象向左平移个单位长度得到函数g(x)的图象,则函数g(x)的单调递减区间是

A. [kπ-,kπ+](k∈Z) B. [kπ,kπ+](k∈Z)

C. [kπ+,kπ+](k∈Z) D. [kπ+,kπ+](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆恒过点,且与直线 相切.

(1)求动圆圆心的轨迹的方程;

(2)探究在曲线上,是否存在异于原点的两点 ,当时,直线恒过定点?若存在,求出该定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若直角三角形两直角边长之和为12,求其周长的最小值;

(2)若三角形有一个内角为,周长为定值,求面积的最大值;

(3)为了研究边长满足的三角形其面积是否存在最大值,现有解法如下:(其中, 三角形面积的海伦公式),

,则

但是,其中等号成立的条件是,于是矛盾,

所以,此三角形的面积不存在最大值.

以上解答是否正确?若不正确,请你给出正确的答案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角ABC的对边分别为abc,已知.

1)求C

2)若的面积为,求的周长;

3)若,求周长的取值范围;

4)若,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面,,分别为线段的中点,点是线段的中点.求证:

1平面

2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB= ,AD=2,E,F为线段AB的三等分点,GH为线段DC的三等分点.将长方形ABCD卷成以AD为母线的圆柱W的半个侧面,ABCD分别为圆柱W上、下底面的直径.

Ⅰ)证明:平面ADHF⊥平面BCHF

(Ⅱ)若PDC的中点,求三棱锥HAGP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆.

1)若直线l且被圆C截得的弦长为,求直线l的方程;

2)点,点Q是圆C上的任意一点,求面积的最小值.

查看答案和解析>>

同步练习册答案