【题目】如图,在四棱柱 中,,,,且.
(Ⅰ)求证:平面 ;
(Ⅱ) 求证: ;
(Ⅲ) 若 ,判断直线 与平面 是否垂直?并说明理由.
【答案】(Ⅰ)见解析; (Ⅱ)见解析; (Ⅲ)见解析.
【解析】
(Ⅰ)由题意结合几何关系可证得平面BCC1B1∥平面ADD1A1,据此结合面面平行的性质即可证得题中的结论;
(Ⅱ)由题意可证得AC⊥平面BB1D,据此证明题中的结论即可;
(Ⅲ)结论:直线B1D与平面ACD1不垂直,利用反证法,假设B1D⊥平面ACD1,结合题意得到矛盾的结论即可说明直线B1D与平面ACD1不垂直.
证明:(Ⅰ)∵AD∥BC,BC平面ADD1A1,AD平面ADD1A1,
∴BC∥平面ADD1A1,
∵CC1∥DD1,CC1平面ADD1A1,DD1平面ADD1A1,
∴CC1∥平面ADD1A1,
又∵BC∩CC1=C,
∴平面BCC1B1∥平面ADD1A1,
又∵B1C平面BCC1B1,
∴B1C∥平面ADD1A1.
(Ⅱ)∵BB1⊥平面ABCD,AC底面ABCD,∴BB1⊥AC,又∵AC⊥BD,BB1∩BD=B,
∴AC⊥平面BB1D,
又∵B1D底面BB1D,
∴AC⊥B1D;
(Ⅲ)结论:直线B1D与平面ACD1不垂直,
证明:假设B1D⊥平面ACD1,
由AD1平面ACD1,可得B1D⊥AD1,
由棱柱中,BB1⊥底面ABCD,∠BAD=90°,
可得:A1B1⊥AA1,A1B1⊥A1D1,
又∵AA1∩A1D1=A1,
∴A1B1⊥平面AA1D1D,
∴A1B1⊥AD1,
又∵A1B1∩B1D=B1,
∴AD1⊥平面A1B1D,
∴AD1⊥A1D,
这与四边形AA1D1D为矩形,且AD=2AA1矛盾,故直线B1D与平面ACD1不垂直.
科目:高中数学 来源: 题型:
【题目】已知正方体的棱长为4,E、F分别是棱AB、的中点,联结EF、、、E、E、E.
求三棱锥的体积;
求直线与平面所成角的大小结果用反三角函数值表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂家具车间做A,B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A,B型桌子分别需要1小时和2小时,漆工油漆一张A,B型桌子分别需要3小时和1小时;又知木工和漆工每天工作分别不得超过8小时和9小时,设该厂每天做A,B型桌子分别为x张和y张.
(1)试列出x,y满足的关系式,并画出相应的平面区域;
(2)若工厂做一张A,B型桌子分别获得利润为2千元和3千元,那么怎样安排A,B型桌子生产的张数,可使得所得利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点外卖现已成为上班族解决午餐问题的一种流行趋势.某配餐店为扩大品牌影响力,决定对新顾客实行让利促销,规定:凡点餐的新顾客均可获赠10元或者16元代金券一张,中奖率分别为和,每人限点一餐,且100%中奖.现有A公司甲、乙、丙、丁四位员工决定点餐试吃.
(Ⅰ) 求这四人中至多一人抽到16元代金券的概率;
(Ⅱ) 这四人中抽到10元、16元代金券的人数分别用、表示,记,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的各项均不为零.设数列的前n项和为Sn,数列的前n项和为Tn, 且 .
(1)求的值;
(2)证明:数列是等比数列;
(3)若对任意的恒成立,求实数的所有值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com