精英家教网 > 高中数学 > 题目详情

【题目】如图1,在等腰梯形中,两腰,底边的三等分点,的中点.分别沿将四边形折起,使重合于点,得到如图2所示的几何体.在图2中,分别为的中点.

(1)证明:平面

(2)求几何体的体积.

【答案】1)见解析(2

【解析】

(1)根据线面垂直的判定定理,可证平面,所以平面平面,再根据面面垂直的性质定理,证出,即可证出平面

(2)由题可知,几何体为三棱柱,它的体积与以为底面,以为高的三棱柱的体积相等,即可求出.

(1)证明:连接,由图1知,四边形为菱形,且

所以是正三角形,从而.

同理可证,

所以平面.

,所以平面

因为平面

所以平面平面.

易知,且的中点,所以

所以平面.

(2)(1)可知,几何体为三棱柱,它的体积与以为底面,以为高的三棱柱的体积相等.

因为.

所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知),的图象上相邻两条对称轴之间的距离为

1)求函数的单调递增区间;

2)若的内角的对边分别为,且,求的值及边上的中线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求曲线处的切线方程;

(Ⅱ)若,求证:

(Ⅲ)当时,若关于的不等式的解集为,且,求的取值范围(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)定义:对于函数,若存在,使成立,则称为函数的不动点.如果函数存在不动点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.

1)求曲线的普通方程及直线的直角坐标方程;

2)求曲线上的点到直线的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,,平面平面是等边三角形.

1)求证:

2)若的面积为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1=10尺).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆经过抛物线的焦点,斜率为1的直线经过且与椭圆交于两点.

1)求面积;

2)动直线与椭圆有且仅有一个交点,且与直线分别交于两点,为椭圆的右焦点,证明为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一200名学生的期中考试语文成绩服从正态分布数学成绩的频数分布直方图如下

(I)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);

(II)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?

(III)如果语文和数学两科都优秀的共有4人,从(II)中的这些同学中随机抽取3人,设三人中两科都优秀的有的分布列和数学期望.

(附参考公式)若

查看答案和解析>>

同步练习册答案