精英家教网 > 高中数学 > 题目详情
9、设x,y,z是空间的不同直线或不同平面,下列条件中能保证“若x⊥z,且y⊥z,则x∥y”为真命题的是
.(填所正确条件的代号)
①x,y,z为直线;②x,y,z为平面;
③x,y为直线,z为平面;④x为直线,y,z为平面.
分析:空间点线面的位置关系考察,借助于正方体考虑平行和垂直.
解答:解:①x,y,z为正方体从一个顶点出发的三条直线,结论错误;
②x,y,z为正方体中交于一点的三个平面,结论错误;
③由垂直于同一平面的两条直线平行可知③正确;
④中有可能x?y,结论错误;
故答案为③
点评:本题借助命题真假的判断考查空间点线面的位置关系,
在空间中要多借助于比较熟悉的几何体,如正方体,三棱锥等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

17、设x,y,z是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若x⊥z,且y⊥z,则x∥y”为真命题的是
①③④
(填所有正确条件的代号)
①x为直线,y,z为平面;②x,y,z为平面;③x,y为直线,z为平面;④x,y为平面,z为直线;⑤x,y,z为直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

5、设x,y,z是空间的不同直线或不同平面,下列条件中能保证“若x⊥z,且y⊥z,则x∥y”为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x、y、z是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若x⊥z,且y⊥z,则x∥y”为真命题的是____________.(填上所有正确条件的代号)

①x为直线,y、z为平面  ②x、y、z为平面  ③x、y为直线,z为平面  ④x、y为平面,z为直线

查看答案和解析>>

科目:高中数学 来源:2010年浙江省湖州市菱湖中学高考数学二模试卷(文科)(解析版) 题型:填空题

设x,y,z是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若x⊥z,且y⊥z,则x∥y”为真命题的是    (填所有正确条件的代号)
①x为直线,y,z为平面;
②x,y,z为平面;
③x,y为直线,z为平面;
④x,y为平面,z为直线;
⑤x,y,z为直线.

查看答案和解析>>

同步练习册答案