精英家教网 > 高中数学 > 题目详情

【题目】传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A、B、C、D、E五个等级进行数据统计如下:

成绩

人数

A

9

B

12

C

31

D

22

E

6

根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;
(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?
(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.

【答案】
(1)解:由于这80人中,有12名学生成绩等级为B,

所以可以估计该校学生获得成绩等级为B的概率为

则该校高二年级学生获得成绩为B的人数约有1000× =150.


(2)解:由于这80名学生成绩的平均分为:

(9×100+12×80+31×60+22×40+6×20)=59.

且59<60,因此该校高二年级此阶段教学未达标


(3)解:成绩为A、B的同学分别有9人,12人,

所以按分层抽样抽取7人中成绩为A的有3人,成绩为B的有4人

则由题意可得:P(X=k)= ,k=0,1,2,3.

∴P(X=0)= ,P(X=1)= ,P(X=2)= ,P(X=3)= .

所以EX=0+1× +2× +3× = .


【解析】(1)由于这80人中,有12名学生成绩等级为B,所以可以估计该校学生获得成绩等级为B的概率为 ,即可得出该校高二年级学生获得成绩为B的人数.(2)由于这80名学生成绩的平均分为: (9×100+12×80+31×60+22×40+6×20).(3)成绩为A、B的同学分别有9人,12人,所以按分层抽样抽取7人中成绩为A的有3人,成绩为B的有4人.由题意可得:P(X=k)= ,k=0,1,2,3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为 . (参考数据:sin15°=0.2588,sin7.5°=0.1305)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=3,其前n项和为Sn , 等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q= (Ⅰ)求an与bn
(Ⅱ)设数列{cn}满足cn= ,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的五棱锥,且
(1)求证:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos2ωx的图象向右平移 个单位,得到函数y=g(x)的图象,若y=g(x)在 上为减函数,则正实数ω的最大值为(
A.
B.1
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数a,b满足a+2b=9.
(1)若|9﹣2b|+|a+1|<3,求a的取值范围;
(2)若a,b>0,且z=ab2 , 求z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线E交于A,B两点,E的准线与x轴交于点C,△CAB的面积为4,以点D(3,0)为圆心的圆D过点A,B. (Ⅰ)求抛物线E和圆D的方程;
(Ⅱ)若斜率为k(|k|≥1)的直线m与圆D相切,且与抛物线E交于M,N两点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+m|+|2x﹣1|(m∈R) (I)当m=﹣1时,求不等式f(x)≤2的解集;
(II)设关于x的不等式f(x)≤|2x+1|的解集为A,且[ ,2]A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,AB=AC,D为△ABC外接圆劣弧 上的点(不与点A,C重合),延长BD至E,延长AD交BC的延长线于F.
(1)求证:∠CDF=∠EDF;
(2)求证:ABACDF=ADFCFB.

查看答案和解析>>

同步练习册答案