精英家教网 > 高中数学 > 题目详情

【题目】如图所示,ABCD为矩形,PA平面ABCD,PA=AD,M,N,Q分别是PC,AB,CD的中点.

求证:(1)MN平面PAD;

(2)平面QMN平面PAD.

【答案】(1)见解析

(2)见解析

【解析】

(1)如图以A为原点,以AB,AD,AP所在直线为坐标轴建立空间直角坐标系,

B(b,0,0),D(0,d,0),P(0,0,d),则C(b,d,0),,求出因为平面PAD的一个法向量为m=(1,0,0),, 所以·m=0,即⊥m.,利用直线与平面平行的判定定理,可证MN平面PAD.

(2)=(0,-d,0),⊥m,,QN不在平面PAD内,又QN平面PAD.,即可得证.

(1) 证明:如图以A为原点,以AB,AD,AP所在直线为坐标轴建立空间直角坐标系,

B(b,0,0),D(0,d,0),P(0,0,d),则C(b,d,0),

因为M,N,Q分别是PC,AB,CD的中点,

所以M,N,Q,

所以.

因为平面PAD的一个法向量为m=(1,0,0),

所以·m=0,即⊥m.

因为MN不在平面PAD内,故MN平面PAD.

(2)=(0,-d,0),⊥m,

QN不在平面PAD内,又QN平面PAD.

又因为MNQN=N,所以平面MNQ平面PAD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知{e1,e2,e3}是空间的一个基底,且=e1+2e2-e3,=-3e1+e2+2e3,=e1+e2-e3,试判断{}能否作为空间的一个基底?若能,试以此基底表示向量=2e1-e2+3e3;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3x2+cx+d有极值.

(1)求实数c的取值范围;

(2)若f(x)在x=2处取得极值,且当x<0时,f(x)<d2+2d恒成立,求实数d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),设函数f(x)= +λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈( ,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点( ,0)求函数f(x)在区间[0, ]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),

(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是(
A.在[ ]上是增函数
B.其图象关于直线x=﹣ 对称
C.函数g(x)是奇函数
D.当x∈[ π]时,函数g(x)的值域是[﹣2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}满足:Sn为数列{an}的前n项和,且2,an , Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若cn=nan , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 平面平面为等边三角形,, 作平面交分别于点,设.

(1)求证:平面

(2)求的值, 使得平面与平面所成的锐二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两台车床加工同一种机械零件如下表:

分类

合格品

次品

总计

第一台车床加工的零件数

35

5

40

第二台车床加工的零件数

50

10

60

总计

85

15

100

从这100个零件中任取一个零件,求:

(1)取得合格品的概率;

(2)取得零件是第一台车床加工的合格品的概率.

查看答案和解析>>

同步练习册答案