精英家教网 > 高中数学 > 题目详情

【题目】经过多年的运作,双十一抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014双十一网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在双十一的销售量p万件与促销费用x万元满足(其中a为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为

元/件,假定厂家的生产能力完全能满足市场的销售需求.

(1)将该产品的利润y万元表示为促销费用x万元的函数;

(2)促销费用投入多少万元时,厂家的利润最大?

【答案】(1);(2)时,促销费用投入1万元,厂家的利润最大;当时,促销费用投入万元,厂家的利润最大.

【解析】

(1)由题意知,

代入化简得:.

(2)

当且仅当时,上式取等号.

时,促销费用投入1万元时,厂家的利润最大;

时,上单调递增,

所以时,函数有最大值,即促销费用投入万元时,厂家的利润最大.

综上,当时,促销费用投入1万元,厂家的利润最大;

时,促销费用投入万元,厂家的利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)是函数的一个极值点,试求的单调区间;

(2),是否存在实数a,使得在区间上的最大值为4?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且△的周长为6,求椭圆的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为盾圆

2)如图,已知盾圆的方程为,设盾圆上的任意一点的距离为到直线的距离为,求证:为定值;

3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为盾圆,设过点的直线与盾圆交于两点,,且),试用表示,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

1)若,写出的单调区间:

2)若函数恰有三个不同的零点,且这些零点之和为-2,求ab的值;

3)若函数上有四个不同零点,求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, // , 点边的中点, 将△沿折起,使平面⊥平面,连接, , , 得到如

图所示的空间几何体.

(Ⅰ)求证: ⊥平面

(Ⅱ)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四棱锥的底面是正方形,垂直于底面,已知四棱锥的正视图,如图2所示.

I)若M的中点,证明:平面

II)求棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001002800进行编号.

1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;

(下面摘取了第7行到第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

2)抽取的100人的数学与地理的水平测试成绩如下表:

成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42

人数

数学

优秀

良好

及格


地理

优秀

7

20

5

良好

9

18

6

及格

a

4

b

若在该样本中,数学成绩优秀率是30%,求a,b的值:

在地理成绩及格的学生中,已知求数学成绩优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,某小区中有条长为50,宽为6.5米的道路ABCD,在路的一侧可以停放汽车,已知小型汽车的停车位是一个2.5米宽,5米长的矩形,GHPQ,这样该段道路可以划岀10个车位,随着小区居民汽车拥有量的增加,停车难成为普遍现象.经过各方协商,小区物业拟压缩绿化,拓宽道路,改变车位方向增加停车位,如图2,改建后的通行宽度保持不变,GAD的距离不变.

(1)绿化被压缩的宽度BE与停车位的角度∠HPE有关,为停车方便,要求,写出关于的函数表达式

(2)沿用(1)的条件和记号,实际施工时,BE=3,问改造后的停车位增加了多少个?

查看答案和解析>>

同步练习册答案