精英家教网 > 高中数学 > 题目详情
15.某种产品的年销售量y与该年广告费用支出x有关,现收集了4组观测数据列于下表:
x(万元)1456
y(万元)30406050
现确定以广告费用支出x为解释变量,销售量y为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立y与x之间的回归方程;
(2)假如2014年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量y.
(3)根据公式R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,计算相关指数R2

分析 (1)首先做出x,y的平均数,利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果;
(2)由已知得x=10时,y=5×10+25=75(万元);
(3)直接根据相关指数公式进行求解即可.

解答 解:(1)$\overline{x}$=$\frac{1+4+5+6}{4}$=4,$\overline{y}$=$\frac{30+40+60+50}{4}$=45
$\sum_{i=1}^{4}$xi•yi=790,$\sum_{i=1}^4{{x_i}^2}=78$(4分)
∴$\widehat{b}$=$\frac{790-4×4×45}{78-4×{4}^{2}}$=5,$\widehat{a}$=45-5×4=25(8分)
∴所求回归直线方程为y=5x+25.(10分)
(2)由已知得x=10时,y=5×10+25=75(万元)
∴可预测该年的销售量为75万元.               (13分)
(3)R2=1-$\frac{0+25+100+25}{225+0+25+100}$=$\frac{4}{7}$. (15分)

点评 本题重点考查了线性回归直线方程及其求解,相关指数的计算等知识,属于中档题.考查运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.数列0.9,0.99,0.999,…的一个通项公式是(  )
A.1+($\frac{1}{10}$)nB.-1+($\frac{1}{10}$)nC.1-($\frac{1}{10}$)nD.1-($\frac{1}{10}$)n+1

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:填空题

已知正数满足,则的最小值为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•(cos-π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2|x+1|+ax.
(1)证明:当a>2时,f(x)在R上是增函数;
(2)若函数f(x)存在两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A={α|α=k×45°+15°,k∈Z},当k=k0(k0∈Z)时,A中的一个元素与角-255°终边相同,若k0取值的最小正数为a,最大负数为b,则a+b=(  )
A.-12B.-10C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的导数
(1)y=x2+log3x;    
(2)y=x3•ex
(3)y=$\frac{cosx}{x}$
(4)y=sin2(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.采取系统抽样的方法从1000名学生中抽出20名学生,将这1000名学生随机编号000~999号并分组:第一组000~049号,第二组050~099号,…,第二十组950~999号,若在第三组中抽得号码为122的学生,则在第十八组中抽得号码为:872的学生.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是(  )
①甲抛出正面次数比乙抛出正面次数多;
②甲抛出反面次数比乙抛出正面次数少;
③甲抛出反面次数比甲抛出正面次数多;
④乙抛出正面次数与乙抛出反面次数一样多.
A.①②B.①③C.②③D.②④

查看答案和解析>>

同步练习册答案