精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是各项均为正整数的等差数列,公差d∈N* , 且{an}中任意两项之和也是该数列中的一项.
(1)若a1=4,则d的取值集合为
(2)若a1=2m(m∈N*),则d的所有可能取值的和为

【答案】
(1){1,2,4}
(2)2m+1﹣1
【解析】解:由题意可得,ap+aq=ak , 其中p、q、k∈N*
由等差数列的通向公式可得a1+(p﹣1)d+a1+(q﹣1)d=a1+(k﹣1),
整理得d= ,(1)若a1=4,则d=
∵p、q、k∈N* , 公差d∈N*
∴k﹣p﹣q+1∈N*
∴d=1,2,4,
故d的取值集合为 {1,2,4};(2)若a1=2m(m∈N*),则d=
∵p、q、k∈N* , 公差d∈N*
∴k﹣p﹣q+1∈N*
∴d=1,2,4,…,2m
∴d的所有可能取值的和为1+2+4+…+2m= =2m+1﹣1,
所以答案是(1){1,2,4},(2)2m+1﹣1.
【考点精析】本题主要考查了等比数列的前n项和公式和等差数列的性质的相关知识点,需要掌握前项和公式:;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为方便市民休闲观光,市政府计划在半径为200米,圆心角为120°的扇形广场内(如图所示),沿△ABC边界修建观光道路,其中A、B分别在线段CP、CQ上,且A、B两点间距离为定长 米.
(1)当∠BAC=45°时,求观光道BC段的长度;
(2)为提高观光效果,应尽量增加观光道路总长度,试确定图中A、B两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在射线y=2x﹣3(x≥0),且与直线y=x+2和y=﹣x+4都相切.
(1)求圆C的方程;
(2)若P(x,y)是圆C上任意一点,求x+2y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式(x+5)(3﹣2x)≤6的解集是(
A.{x|x≤﹣1或x }
B.{x|﹣1≤x }?
C.{x|x 或x≥﹣1}
D.{x| ?x≤﹣1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算法流程图如图所示,则输出的结果是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据3,4,5,a,b的平均数是4,中位数是m,从3,4,5,a,b,m这组数据中任取一数,取到数字4的概率为 ,那么3,4,5,a,b这组数据的方差为(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】儿童乘坐火车时,若身高不超过1.1m,则不需买票;若身高超过1.1m但不超过1.4m,则需买半票;若身高超过1.4m,则需买全票.试设计一个买票的算法,并写出相应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式ax2+bx+c<0的解集为({﹣∞,﹣1})∪( ,+∞),则不等式cx2﹣bx+a<0的解集为(
A.(﹣1,2)
B.(﹣∞,﹣1)∪(2,+∞)
C.(﹣2,1)
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

同步练习册答案