精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体的棱长为2分别为棱上的点,且与顶点不重合.

1)若直线相交于点,求证:三点共线;

2)若分别为的中点.

(ⅰ)求证:几何体为棱台;

(ⅱ)求棱台的体积.

(附:棱台的体积公式,其中分别为棱台上下底面积,为棱台的高)

【答案】1)证明见解析;(2)(ⅰ)证明见解析;(ⅱ)

【解析】

(1)由平面平面,平面平面,根据点在两个不重合的面内,则点在两个面的公共线上即可证出.

(2)(ⅰ)连分别为棱的中点,证出四边形为梯形,从而可得相交,再由(1)可得直线交于一点,由平面平面,即可证出.

(ⅱ)求出,以及棱台的高,代入棱台的体积公式即可求解.

证明:(1

平面平面

平面平面

即点为平面与平面的公共点.

平面平面

,即三点共线.

2)(ⅰ)连

分别为棱的中点,

的中位线,

四边形为平行四边形.

四边形为梯形,

相交.

由(1)知:直线交于一点,

平面平面

几何体为三棱台.

(ⅱ)由题意:

即棱台的体积是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥两两垂直,是三棱锥外接球面上一动点,则到平面的距离的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC分别为△ABC的三边abc所对的角,向量(sin Asin B)(cos Bcos A),且sin 2C.

(1)求角C的大小;

(2)sin Asin Csin B成等差数列,且,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1中,所有棱长均相等,且AA1⊥平面ABC,点DEF分别为所在棱的中点.

1)求证:EF∥平面CDB1

2)求异面直线EFBC所成角的余弦值;

3)求二面角B1CDB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别为abc,且

1)求的值;

2)若cosB,△ABC的面积为,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·衢州调研)已知四棱锥PABCD的底面ABCD是菱形,∠ADC120°AD的中点M是顶点P在底面ABCD的射影,NPC的中点.

(1)求证:平面MPB⊥平面PBC

(2)MPMC,求直线BN与平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,点在椭圆.

求椭圆的方程;

已知为平面内的两个定点,过点的直线与椭圆交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列中, ,且 成等差数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列满足,数列的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若为锐角,,求的值;

2)函数,若对任意都有恒成立,求实数的最大值;

3)已知,求的值.

查看答案和解析>>

同步练习册答案