精英家教网 > 高中数学 > 题目详情
(2013•眉山一模)定义在区间[a,b]上的连续函数y=f(x),如果?ξ∈[a,b],使得f(b)-f(a)=f'(ξ)(b-a),则称ξ为区间[a,b]上的“中值点”.下列函数:
①f(x)=3x+2;   ②f(x)=x2-x+1;   ③f(x)=ln(x+1);   ④f(x)=(x-
12
)3

在区间[0,1]上“中值点”多于一个的函数序号为
①④
①④
.(写出所有满足条件的函数的序号)
分析:根据题意,“中值点”的几何意义是在区间[0,1]上存在点,使得函数在该点的切线的斜率等于区间[0,1]的两个端点连线的斜率值.分别画出四个函数的图象,如图.由此定义再结合函数的图象与性质,对于四个选项逐个加以判断,即得正确答案.
解答:解:根据题意,“中值点”的几何意义是在区间[0,1]上存在点,使得函数在该点的切线的斜率等于区间[0,1]的两个端点连线的斜率值.如图.
对于①,根据题意,在区间[0,1]上的任何一点都是“中值点”,故①正确;
对于②,根据“中值点”函数的定义,抛物线在区间[0,1]只存在一个“中值点”,故②不正确;
对于③,f(x)=ln(x+1)在区间[0,1]只存在一个“中值点”,故③不正确;
对于④,根据对称性,函数f(x)=(x-
1
2
)3
在区间[0,1]存在两个“中值点”,故④正确.
故答案为:①④.
点评:本题以命题真假的判断为载体,着重考查了导数及其几何意义等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•眉山一模)函数f(x)=
lg|x|
x2
的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•眉山一模)设i是虚数单位,则复数(1-i)-
2
i
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•眉山一模)已知函数f(x)=lnx-kx+1.
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围;
(3)证明:
n
i=2
lni
i+1
n(n-1)
4
(n∈N+,n>1).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•眉山一模)若集合A={x|x>0},B={x|x2<4},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•眉山一模)若Sn是等差数列{an}的前n项和,且S8-S3=20,则S11的值为(  )

查看答案和解析>>

同步练习册答案