精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函数f(x)= cos2x
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈[0, ]时,求函数f(x)的值域.

【答案】
(1)解:函数f(x)= cos2x

=cos2xcos ﹣sin2xsin

=

由2k

可得k

单调递增区间为:[k ]


(2)解:当x∈[0, ]时,

可得2x

因此sin(2x+

所以函数f(x)的值域是


【解析】(1)首先根据 =(1,sinx), =(cos(2x+ ),sinx),求出 ;然后根据函数f(x)= cos2x,求出函数f(x)的解析式;最后根据正弦函数的特征,求出其单调递增区间即可;(2)当x∈[0, ]时,可得2x ,然后求出函数f(x)的值域即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料,五合板,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料、五合板;生产每个书橱需要方木枓、五合板.出售一张书桌可获利润元,出售一个书橱可获利润元,怎样安排生产可使所得利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0 , 使f(x0)≤0的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 为参数, ),在以坐标原点为极点, 轴的非负半轴为极轴的极坐标系中,曲线 .

(1)试将曲线化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;

(2)当时,两曲线相交于 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查的数据,回答下列问题:

(1)试估算该校高三年级学生获得成绩为的人数;

(2)若等级分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?

(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5


(1)求出y关于x的线性回归方程
(2)试预测加工10个零件需要多少小时?
(参考公式: = = ;)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:f(x)=x2+bx+c,其中:0≤b≤4,0≤c≤4,记函数f(x)满足条件: 的事件为A,则事件A发生的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 A(x1 , y1),B(x2 , y2)是函数f(x)=x﹣ 的图象上任意两点,若 M为 A,B的中点,且 M的横坐标为1.
(1)求y1+y2
(2)若Tn= ,n∈N* , 求 Tn
(3)已知数列{an}的通项公式an= (n≥1,n∈N*),数列{an}的前n项和为Sn , 若不等式2nSn<m2n﹣4Tn+5对任意n∈N*恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且Sn=2an﹣3n,(n∈N*).
(1)证明数列{an+3}为等比数列
(2)求{Sn}的前n项和Tn

查看答案和解析>>

同步练习册答案