19£®Ä³¼¯ÍÅΪ»ñµÃ¸ü´óµÄÊÕÒ棬ÿÄêҪͶÈëÒ»¶¨µÄ×ʽðÓÃÓÚ¹ã¸æ´ÙÏú£®¾­µ÷²é£¬Ã¿ÄêͶÈë¹ã¸æ·Ñt£¨°ÙÍòÔª£©£¬¿ÉÔö¼ÓÏúÊÛ¶îԼΪ-t2+7t£¨°ÙÍòÔª£©£¨0¡Üt¡Ü4£©£®
£¨1£©Èô¸Ã¹«Ë¾½«µ±ÄêµÄ¹ã¸æ·Ñ¿ØÖÆÔÚ400ÍòÔªÖ®ÄÚ£¬ÔòӦͶÈë¶àÉÙ¹ã¸æ·Ñ£¬²ÅÄÜʹ¸Ã¹«Ë¾»ñµÃµÄÊÕÒæ×î´ó£¿
£¨2£©Ïָù«Ë¾×¼±¸¹²Í¶Èë400ÍòÔª£¬·Ö±ðÓÃÓÚ¹ã¸æ´ÙÏúºÍ¼¼Êõ¸ÄÔ죮¾­Ô¤²â£¬Ã¿Í¶Èë¼¼Êõ¸ÄÔì·Ñx£¨°ÙÍòÔª£©£¬¿ÉÔö¼ÓµÄÏúÊÛ¶îΪ-$\frac{1}{3}$x3+x2+3x£¨°ÙÍòÔª£©£®ÇëÉè¼ÆÒ»¸ö×ʽð·ÖÅä·½°¸£¬Ê¹¸Ã¹«Ë¾»ñµÃµÄÊÕÒæ×î´ó£®£¨×¢£ºÊÕÒæ=ÏúÊÛ¶î-ͶÈ룩

·ÖÎö £¨1£©ÉèͶÈët£¨t°ÙÍòÔª£©µÄ¹ã¸æ·ÑºóÔö¼ÓµÄÊÕÒæΪf£¨t£©¸ù¾ÝÊÕÒæΪÏúÊÛ¶îÓëͶ·ÅµÄ²î¿É½¨Á¢ÊÕÒæÄ£ÐÍΪ£ºf£¨t£©=£¨-t2+7t£©-t=-t2+6t£¬ÔÙÓɶþ´Îº¯Êý·¨ÇóµÃ×î´óÖµ£®
£¨2£©¸ù¾ÝÌâÒ⣬ÈôÓü¼Êõ¸ÄÔìµÄ×ʽðΪx£¨°ÙÍòÔª£©£¬ÔòÓÃÓÚ¹ã¸æ´ÙÏúµÄ×ʽðΪ£¨4-x£©£¨°ÙÍòÔª£©£¬ÔòÊÕÒæÄ£ÐÍΪ£ºg£¨x£©=£¨-$\frac{1}{3}$x3+x2+3x£©+[-£¨4-x£©2+7£¨4-x£©]-3=-$\frac{1}{3}$x3+4x+12£¨0¡Üx¡Ü4£©£¬ÒòΪÊǸߴκ¯Êý£¬ËùÒÔÓõ¼Êý·¨Ñо¿Æä×î´óÖµ£®

½â´ð ½â£º£¨1£©ÉèͶÈët£¨t°ÙÍòÔª£©µÄ¹ã¸æ·ÑºóÔö¼ÓµÄÊÕÒæΪf£¨t£©£¨°ÙÍòÔª£©£¬
ÔòÓÐf£¨t£©=£¨-t2+7t£©-t=-t2+6t=-£¨t-3£©2+9£¨0£¼t¡Ü4£©£¬
ËùÒÔµ±t=3°ÙÍòԪʱ£¬f£¨t£©È¡µÃ×î´óÖµ9°ÙÍòÔª£®
¼´Í¶Èë3°ÙÍòԪʱµÄ¹ã¸æ·Ñʱ£¬¸Ã¹«Ë¾ÓÉ´Ë»ñµÃµÄÊÕÒæ×î´ó£®£¨6·Ö£©
£¨2£©ÉèÓü¼Êõ¸ÄÔìµÄ×ʽðΪx£¨°ÙÍòÔª£©£¬
ÔòÓÃÓÚ¹ã¸æ´ÙÏúµÄ×ʽðΪ£¨4-x£©£¨°ÙÍòÔª£©£¬
ÔòÔö¼ÓµÄÊÕÒæΪg£¨x£©=£¨-$\frac{1}{3}$x3+x2+3x£©+[-£¨4-x£©2+7£¨4-x£©]-3=-$\frac{1}{3}$x3+4x+12£¨0¡Üx¡Ü4£©£¬
ËùÒÔg¡ä£¨x£©=-x2+4£®Áîg¡ä£¨x£©=0£¬
½âµÃx=2£¬»òx=-2£¨ÉáÈ¥£©£®
ÓÖµ±0¡Üx£¼2ʱ£¬g¡ä£¨x£©£¾0£¬
µ±2£¼x¡Ü3ʱ£¬g¡ä£¨x£©£¼0£®
¹Êg£¨x£©ÔÚ[0£¬2]ÉÏÊÇÔöº¯Êý£¬ÔÚ[2£¬4]ÉÏÊǼõº¯Êý£®
ËùÒÔµ±x=2ʱ£¬g£¨x£©È¡×î´óÖµ£¬
¼´½«2°ÙÍòÔªÓÃÓÚ¼¼Êõ¸ÄÔ죬2°ÙÍòÔªÓÃÓÚ¹ã¸æ´ÙÏú£¬¸Ã¹«Ë¾ÓÉ´Ë»ñµÃµÄÊÕÒæ×î´ó£®£¨16·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯ÊýÄ£Ð͵Ľ¨Á¢ºÍÓ¦Ó㬻¹¿¼²éÁ˶þ´Îº¯Êý·¨ºÍµ¼Êý·¨Ñо¿º¯ÊýµÄ×îÖµµÄ»ù±¾·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬ÇÒ¹«²î²»Îª0µÄµÈ²îÊýÁУ¬¶øµÈ±ÈÊýÁÐ{bn}µÄÇ°3Ïî·Ö±ðÊÇa1£¬a2£¬a6£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨2£©Èç¹ûb1+b2+b3+¡­+bn=5£¬ÇóÕýÕûÊýnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÓÐÏÂÁÐÐðÊö£»
¢ÙÈôf£¨x£©=|x-1|+|x+a|ΪÇø¼ä[-3£¬b]ÉϵÄżº¯Êý£¬Ôòa+b=4£»
¢ÚÈô¹ØÓÚxµÄ·½³Ìx2-£¨2k+1£©x+k2=0ÓÐÁ½¸ö´óÓÚ1µÄʵÊý¸ù£¬ÔòkµÄÈ¡Öµ·¶Î§Îª£¨2£¬+¡Þ£©£»
¢ÛÒÑÖªº¯Êýf£¨x£©=x|x|£¬Èô¶ÔÈÎÒâµÄx¡Ê[t£¬t+2]£¬²»µÈʽf£¨x+t£©¡Ý2f£¨x£©ºã³ÉÁ¢£¬ÔòʵÊýtµÄÈ¡Öµ·¶Î§ÊÇ[$\sqrt{2}$£¬+¡Þ£©£»
¢ÜÒÑÖªAºÍBÊǵ¥Î»Ô²OÉϵÄÁ½µã£¬¡ÏAOB=$\frac{2}{3}$¦Ð£¬µãCÔÚÁÓ»¡$\widehat{AB}$ÉÏ£¬Èô$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$£¬ÆäÖÐx£¬y¡ÊR£¬Ôòx+yµÄ×î´óÖµÊÇ2£®
ÆäÖÐÕýÈ·ÐðÊöµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¬F2£¬¹ýF2×÷Çãб½ÇΪ120¡ãµÄÖ±ÏßÓëÍÖÔ²µÄÒ»¸ö½»µãΪM£¬ÈôMF1´¹Ö±ÓÚMF2£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ$\sqrt{3}-1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªa¡¢b¡ÊR£¬ÃüÌ⣺Èôab¡Ù0£¬Ôòa¡Ù0ÇÒb¡Ù0µÄÄæ·ñÃüÌâÊÇÈôa=0»òb=0£¬Ôòab=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®É躯Êýf£¨x£©=4x£¬g£¨x£©=$\frac{{\sqrt{x+1}}}{x}$£¬Ôòf£¨x£©•g£¨x£©=4$\sqrt{x+1}$£¬£¨x¡Ý-1ÇÒx¡Ù0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÓÐÒÔÏÂËĸöÃüÌ⣺¢ÙÈô$\frac{1}{x}=\frac{1}{y}$£¬Ôòx=y£®¢ÚÈôlgxÓÐÒâÒ壬Ôòx£¾0£®¢ÛÈôx=y£¬Ôò$\sqrt{x}=\sqrt{y}$£®¢ÜÈôx£¼y£¬Ôò x2£¼y2£®ÔòÊÇÕæÃüÌâµÄÐòºÅΪ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÛC£®¢Ú¢ÛD£®¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÃüÌâp£º?x¡ÊR£¬cosx¡Ü1£¬ÔòÃüÌâpµÄ·ñ¶¨©VpÊÇ?x¡ÊR£¬cosx£¾1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®f£¨x£©=2x-1£¬ÇÒ$f£¨m£©=\frac{1}{8}$£¬Ôòm=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸