精英家教网 > 高中数学 > 题目详情
19.已知公差不为零的等差数列{an}的前3项和S3=9,且a1、a2、a5成等比数列.求数列{an}的通项公式及前n项的和Sn

分析 由已知利用等差数列的前n项和公式和等比数列的性质列出方程组,求出首项和公差,由此能求出数列{an}的通项公式及前n项的和Sn

解答 解:∵公差不为零的等差数列{an}的前3项和S3=9,且a1、a2、a5成等比数列,
∴$\left\{\begin{array}{l}{3{a}_{1}+\frac{3×2}{2}d=9}\\{({a}_{1}+d)^{2}={a}_{1}({a}_{1}+4d)}\\{d≠0}\end{array}\right.$,
解得a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
Sn=n×1+$\frac{n(n-1)}{2}×2$=n2

点评 本题考查等差数列的通项公式和前n项和的求法,是基础题,解题时要认真审题,注意等比数列和等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,(x≤1)}\\{lo{g}_{2}x,(x>1)}\end{array}\right.$,则f(1)+f(4)=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lg(2+x)+lg(2-x),
(Ⅰ)求函数f(x)的定义域及值域;
(Ⅱ)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下列四则函数:
①sin(x-$\frac{3π}{2}$),y=cosx;②y=sinx,y=tanx•cosx;
③y=1-ln(x2),y=1-2lnx;④y=2+$\sqrt{{x}^{2}}$,y=2+$\root{3}{{x}^{3}}$.
其中,是相等函数的一共有(  )
A.1组B.2组C.3组D.4组

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=x+$\frac{2}{x}$.
(1)判断f(x)的奇偶性,并证明你的结论.
(2)用函数单调性的定义证明函数f(x)在[$\sqrt{2}$,+∞)内是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.A、B两城相距100km,在两地之间距A城x km处D地建一核电站给A、B两城供电,为保证城市安全,核电站距城市距离不得小于10km,已知供电费用与供电距离的平方和供电量之积成正比.比例系数为λ,若A城供电量为10亿度/月,B城为20亿度/月,当x=20km时,A城的月供电费用为1000.
(1)把月供电总费用y表示成x的函数,并求定义域.
(2)核电站建在距A城多远时,才能使用供电总费用最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列关系式中,成立的是(  )
A.${log_3}4>1>{log_{\frac{1}{3}}}10$B.${log_{\frac{1}{3}}}10>1>{log_3}4$
C.${log_3}4>{log_{\frac{1}{3}}}10>1$D.${log_{\frac{1}{3}}}10>{log_3}4>1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=2sinx$co{s}^{2}\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π处取最小-1.
(1)求φ的值;若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求f(x)的单减区间;
(2)把f(x)的图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位得的图象g(x),求g(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设复数z1,z2满足z1z2+2iz1-2iz2+1=0,若z1,z2满足$\overline{{z}_{2}}$-z1=2i,求z1,z2

查看答案和解析>>

同步练习册答案