精英家教网 > 高中数学 > 题目详情
函数f(x)=x+
1
ax
在(-∞,-1)上单调递增,则实数a的取值范围是(  )
A、[1,+∞)
B、(-∞,0)∪(0,1]
C、(0,1]
D、(-∞,0)∪[1,+∞)
考点:函数单调性的性质
专题:计算题,函数的性质及应用,导数的综合应用
分析:求出函数的导数,由题意可得f′(x)≥0在(-∞,-1)上恒成立.运用参数分离可得
1
a
≤x2在(-∞,-1)上恒成立.运用二次函数的最值,求出右边的范围即可得到.
解答: 解:函数f(x)=x+
1
ax
的导数为f′(x)=1-
1
ax2

由于f(x)在(-∞,-1)上单调递增,
则f′(x)≥0在(-∞,-1)上恒成立.
即为
1
a
≤x2在(-∞,-1)上恒成立.
由于当x<-1时,x2>1,
则有
1
a
≤1,解得,a≥1或a<0.
故选D.
点评:本题考查函数的单调性的运用,考查运用导数判断单调性,以及不等式恒成立问题转化为求函数最值或范围,属于基础题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为内角A,B,C的对边,若
sinA
a
=
cosB
b
,则B的值为(  )
A、30°B、45°
C、30°D、30°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
是平面内两个互相垂直的单位向量,若向量
c
满足(
a
-
c
)•(
b
-
c
)=0,则|
c
|的最大值是(  )
A、1
B、2
C、
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线2x-y-1=0与直线x+my+3=0平行,则m的值为(  )
A、
1
2
B、-
1
2
C、-2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=
2
,|
b
|=
3
,|
a
+
b
|=2
2

(1)求:
a
b
;  
(2)若(
a
+
b
)⊥(
a
+k
b
),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在[0,1]上是增函数,在[1,+∞)上是减函数,且f(3)=0,则满足(x-1)f(x)<0的x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有11个人按2,2,2,2,3组合,有
 
种组合办法.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四个正数1,x,y,3中,前三个数成等比数列,后三个数成等差数列,则x+y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若(3x+
1
x
n的展开式中各项系数和为1024,则展开式中含x的5次幂的项为
 

查看答案和解析>>

同步练习册答案