精英家教网 > 高中数学 > 题目详情
11.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x+y-3≥0}\\{y≤4}\end{array}\right.$,则z=3x+y的最小值为1.

分析 首先画出约束条件对应的平面区域,根据目标函数的几何意义,得到去最值的点.

解答 解:x,y对应的区域如图
由题意,
当直线z=3x+y经过点A时z最小,由$\left\{\begin{array}{l}{x-y+1=0}\\{y=4}\end{array}\right.$得到A(-1,4),
所以zmin=-3+4=1;
故答案为:1.

点评 本题考查了简单线性规划问题;关键是正确画出平面区域,利用目标函数的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设数列{xn}的通项为xn=$\left\{\begin{array}{l}{\frac{n+1}{\sqrt{n}},n为奇数}\\{\frac{1}{n},n为偶数}\end{array}\right.$则{xn}是(  )
A.当n→∞时的无穷大量B.当n→∞时的无穷小量
C.有界变量D.无界变量

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果函数f(x)=(2m-1)x2+mx+3在实数集R内是单调函数,那么m的值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:($\frac{x-y}{{x}^{\frac{1}{2}}-{y}^{\frac{1}{2}}}$+$\frac{x-y}{{x}^{\frac{1}{2}}+{y}^{\frac{1}{2}}}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=log36,b=2-2,c=log${\;}_{\frac{1}{2}}$2,则(  )
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$f(x)=\frac{sinx}{1+cosx}+1$,若$a=f(lg5),b=f(lg\frac{1}{5})$,则(  )
A.a+b=0B.a-b=0C.a+b=2D.a-b=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=Asin(ωx+ϕ)$(A>0,ω>0,0<ϕ<\frac{π}{2})$的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)已知函数$g(x)=sinx•f(\frac{x}{2})+\sqrt{3}$,$x∈[0,\frac{π}{2}]$,求g(x)的最值及其对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|-2<x<1},集合B={x|-1<x<4}.
(1)求A∩B,A∪B;
(2)求(CRA)∪B,A∩(CRB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.方程2a=|ax-1|(a>0且a≠1)有两个不同的解,则a的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案