精英家教网 > 高中数学 > 题目详情
某四面体的三视图如图所示,则该四面体的表面积是(  )
A、21B、27C、54D、60
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,分别求出各个面的面积相加可得答案.
解答: 解:根据几何体的三视图知,
该几何体是三棱锥,如图所示;

且底面△ABC为俯视图中的直角三角形,∠ABC=90°,
其中AB=4,BC=3,
∴AC=5,
PA⊥底面ABC,且PA=3,
∴∠PAB=∠PAC=90°,CB⊥PB;
∴S△ABC=
1
2
AB•BC=
1
2
×4×3=6,
S△PAB=
1
2
PA•AB=
1
2
×3×4=6,
S△PAC=
1
2
PA•AC=
1
2
×3×5=
15
2

S△PBC=
1
2
PB•BC=
1
2
×5×3=
15
2

∴三棱锥P-ABC的表面积为
S=S△ABC+S△PAB+S△PAC+S△PBC=6+6+
15
2
+
15
2
=27.
故选:B.
点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示.
(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a的值;
(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图OA1=1,直角三角形OAnAn+1(n=1,2,3…)的直角边AnAn+1=
n
,记an=OAn,则数列{an}的通项公式为(  )
A、an=
n2+n-1
2
B、an=
n2-n+2
2
C、an=
n2-n+2
2
D、an=
n2+n-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

比值
logaN
logaMN
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
BC
=
a
CA
=
b
AB
=
c
,当(
a
b
):(
c
b
)(
a
c
)=2:1:3时,求△ABC的三个内角(结果精确到1°)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是(  )
A、AB∥mB、AC⊥m
C、AC⊥βD、AB∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-
1
2
x+c(a、c∈R),满足f(1)=0,且f(x)≥0在x∈R时恒成立.
(1)求a、c的值;
(2)若h(x)=
3
4
x2-bx+
b
2
-
1
4
,解不等式f(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin
x
2
cos
x
2
+
3
cosx.
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移
π
6
个单位,得到函数g(x)的图象,并求出关于x的方程g(x)=1∈,当x[0,π]时的根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正切函数y=tanx的图象关于点M(θ,0)对称,则cosθ=(  )
A、-1或0B、1或0
C、-1或0或1D、1或-1

查看答案和解析>>

同步练习册答案