A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据“好点”的定义,只要判断点在指数函数和对数函数图象上即可.
解答 解:设对数函数为f(x)=logax,指数函数为g(x)=bx,
①∵f(1)=loga1=0,∴M(1,1)不在对数函数图象上,故M(1,1)不是“好点”.
②∵f($\frac{1}{2}$)=loga$\frac{1}{2}$=$\frac{1}{2}$,∴a=$\frac{1}{4}$,即P($\frac{1}{2}$,$\frac{1}{2}$)在对数函数图象上,
∵g($\frac{1}{2}$)=b2=$\frac{1}{2}$,解得b=$\frac{1}{4}$,即P($\frac{1}{2}$,$\frac{1}{2}$)在指数函数图象上,故P($\frac{1}{2}$,$\frac{1}{2}$)是“好点”.
③∵f(2)=loga2=1,∴a=2,即Q(2,1)在对数函数图象上,
∵g(2)=b2=1,解得b=1,不成立,即Q(2,1)不在指数函数图象上,故Q(2,1)不是“好点”.
④f(2)=loga2=$\frac{1}{2}$,∴a=4,即H(2,$\frac{1}{2}$)在对数函数图象上,
∵g(2)=b2=$\frac{1}{2}$,解得b=$\frac{\sqrt{2}}{2}$即H(2,$\frac{1}{2}$)在指数函数图象上,故H(2,$\frac{1}{2}$)是“好点”.
故P,H是“好点,
故选:B.
点评 本题主要考查与指数函数和对数函数有关的新定义,定义的实质是解指数方程和对数方程.
科目:高中数学 来源: 题型:选择题
A. | 7 | B. | $\sqrt{7}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,1] | B. | (-1,1) | C. | (-1,0)∪(0,1) | D. | [-1,0)∪(0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com