精英家教网 > 高中数学 > 题目详情
根据定义在集合A上的函数y=f(x),构造一个数列发生器,其工作原理如下:
①输入数据x∈A,计算出x1=f(x);
②若x∉A,则数列发生器结束工作;
若x∈A,则输出x1,并将x1反馈回输入端,再计算出x2=f(x1).并依此规律继续下去.
现在有A={x|0<x<1},(m∈N*).
(1)求证:对任意x∈A,此数列发生器都可以产生一个无穷数列{xn};
(2)若,记(n∈N*),求数列{an}的通项公式;
(3)在得条件下,证明(m∈N*).
【答案】分析:(1)当x∈A,即0<x<1 时,由m∈N*,可知0<f(x)<1,即f(x)∈A,故对任意x∈A,有x1=f(x)∈A,由 x1∈A 有x2=f(x1)∈A,以此类推,可一直继续下去,从而可以产生一个无穷数列;
(2)易证{bn}是以为首项,以为公比的等比数列,从而求出,从而求出an=+1;
(3)要证,即证,只需证,当m∈N*时,利用二项式定理以及放缩法证明不等式即可.
解答:解:(1)当x∈A,即0<x<1 时,由m∈N*,可知m+1-x>0,



∴0<f(x)<1,即f(x)∈A
故对任意x∈A,有x1=f(x)∈A,
 由 x1∈A 有x2=f(x1)∈A,
  x2∈A 有x3=f(x2)∈A;
以此类推,可一直继续下去,从而可以产生一个无穷数列
(2)由xn+1=f(xn)=,可得


令bn=an-1,则

所以{bn}是以为首项,以为公比的等比数列.
,即an=+1      
(3)要证,即证,只需证
当m∈N*时,
=++…+≥2,
因为,当k≥2 时,

所以,当m≥2时=++…+
<1+1+(1-)+(-)+…(-)=3-<3
又当m=1时,
所以对于任意m∈N*,都有
所以对于任意m∈N*,都有证
点评:本题主要考查了等比数列的通项公式,以及无穷数列的证明和二项式定理证明不等式,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据定义在集合A上的函数y=f(x),构造一个数列发生器,其工作原理如下:①输入数据x0∈A,计算出x1=f(x0);②若x1∉A,则数列发生器结束工作;若x1∈A,则输出x1,并将x1反馈回输入端,再计算出x2=f(x1),并依此规律继续下去.若集合A={x|0<x<1}},f(x)=
mx
m+1-x
(m∈N*).
(理)(1)求证:对任意x0∈A,此数列发生器都可以产生一个无穷数列{xn};
(2)若x0=
1
2
,记an=
1
xn
(n∈N*),求数列{an}的通项公式;
(3)在(2)的条件下,证明:3≤am<4(n∈N*).
(文)(1)求证:对任意x0∈A,此数列发生器都可以产生一个无穷数列{xn};
(2)若m=1,求证:数列{xn}单调递减;
(3)若x0=
1
2
,记an=
1
xn
(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•眉山一模)根据定义在集合A上的函数y=f(x),构造一个数列发生器,其工作原理如下:①输入数据x0∈A,计算出x=f(x0);②若x1∉A,则数列发生器结束工作;若x1∈A,则输出x1,并将x1反馈回输入端,再计算出x2=f(x1),依次规律继续下去.若集合A={x|0<x<1},f(x)=
mx
m+1-x
(m∈N*)

(Ⅰ)求证:x∈A时,f(x)∈A.
(Ⅱ)求证:对任意x0∈A,此数列发生器都可以产生一个无穷数列去{xn}
(Ⅲ)若x0=
1
2
,记an=
1
xn
(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)根据定义在集合A上的函数y=f(x),构造一个数列发生器,其工作原理如下:
①输入数据x0∈A,计算出x1=f(x0);
②若x0∉A,则数列发生器结束工作;
若x0∈A,则输出x1,并将x1反馈回输入端,再计算出x2=f(x1).并依此规律继续下去.
现在有A={x|0<x<1},f(x)=
mx
m+1-x
(m∈N*).
(1)求证:对任意x0∈A,此数列发生器都可以产生一个无穷数列{xn};
(2)若x0=
1
2
,记an=
1
xn
(n∈N*),求数列{an}的通项公式;
(3)在得条件下,证明
1
4
xm
1
3
(m∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年宣武区质量检一)(14分)

根据定义在集合A上的函数y=,构造一个数列发生器,其工作原理如下:

①     输入数据,计算出

②     若,则数列发生器结束工作;

,则输出,并将反馈回输入端,再计算出。并依此规律继续下去。

现在有

(1)       求证:对任意,此数列发生器都可以产生一个无穷数列

(2)       若,记,求数列的通项公式;

(3)       在(2)得条件下,证明

查看答案和解析>>

科目:高中数学 来源:2010年四川省眉山市高考数学一模试卷(文科)(解析版) 题型:解答题

根据定义在集合A上的函数y=f(x),构造一个数列发生器,其工作原理如下:①输入数据x∈A,计算出x=f(x);②若x1∉A,则数列发生器结束工作;若x1∈A,则输出x1,并将x1反馈回输入端,再计算出x2=f(x1),依次规律继续下去.若集合A={x|0<x<1},
(Ⅰ)求证:x∈A时,f(x)∈A.
(Ⅱ)求证:对任意x∈A,此数列发生器都可以产生一个无穷数列去{xn}
(Ⅲ)若,记(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案