精英家教网 > 高中数学 > 题目详情

【题目】下列说法错误的是( )

A. 命题x24x30,则x3”的逆否命题是:x≠3,则x24x3≠0”

B. “x>1”“|x|>0”的充分不必要条件

C. pq为假命题,则pq均为假命题

D. 命题p“x0∈R使得x01<0”,则p“x∈R,均有x2x1≥0”

【答案】C

【解析】

因为

A.命题x24x30,则x3”的逆否命题是:x≠3,则x24x3≠0”成立,

B“x>1”“|x|>0”的充分不必要条件,成立

C.若pq为假命题,则pq均为假命题,可能一真一假,故错误。

D.命题p“x0∈R使得x01<0”,则p“x∈R,均有x2x1≥0”,成立。故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】整改校园内一块长为15 m,宽为11 m的长方形草地(如图A),将长减少1 m,宽增加1 m(如图B).问草地面积是增加了还是减少了?假设长减少x m,宽增加x m(x>0),试研究以下问题:

x取什么值时,草地面积减少?

x取什么值时,草地面积增加?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xex+1|,关于x的方程f2(x)+2sinαf(x)+cosα=0有四个不等实根,sinα﹣cosα≥λ恒成立,则实数λ的最大值为(
A.﹣
B.﹣
C.﹣
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合为下述条件的函数的集合:①定义域为;②对任意实数,都有

1)判断函数是否为中元素,并说明理由;

2)若函数是奇函数,证明:

3)设都是中的元素,求证:也是中的元素,并举例说明,不一定是中的元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点满足,且点的坐标为.

(1)求过点的直线的方程;

(2)试用数学归纳法证明:对于,点都在(1)中的直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB与△PAD都是等边三角形,平面ABCD⊥平面PBD.
(I)证明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣kx2(k∈R)有四个不同的零点,则实数k的取值范围是(
A.k<0
B.k<1
C.0<k<1
D.k>1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,只需将函数y=sin2x的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2+2 f(x)dx,则 f(x)dx=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

同步练习册答案