精英家教网 > 高中数学 > 题目详情
已知椭圆=1及以下3个函数:①f(x)=x;②f(x)=sin x;③f(x)=cos x.其中函数图像能等分该椭圆面积的函数个数有(  )
A.1个B.2个
C.3个D.0个
B
要使函数y=f(x)的图像能等分该椭圆的面积,则f(x)的图像应该关于椭圆的中心O对称,即f(x)为奇函数,①和②均满足条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率.

(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),椭圆的右顶点为,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的焦点与椭圆的焦点重合,且该椭圆的长轴长为,是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:,直线的斜率之积为,求证:存在定点
使得为定值,并求出的坐标;
(3)若在第一象限,且点关于原点对称,点轴的射影为,连接 并延长交椭圆于
,求证:以为直径的圆经过点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1的左焦点为F1,右顶点为A,上顶点为B.若∠F1BA=90°,则椭圆的离心率是(  )
A.  B.  C.  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1F2,两条曲线在第一象限的交点记为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1e2,则e1·e2的取值范围是(  )
A.0,B.C.,+∞D.,+∞

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的离心率为,则双曲线的渐近线方程是________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,F1F2分别为椭圆=1(ab>0)的左、右焦点,BC分别为椭圆的上、下顶点,直线BF2与椭圆的另一个交点为D,若cos∠F1BF2,则直线CD的斜率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上一动点,是椭圆的两个焦点,则的最大值为
A.3B.4C.5D.16

查看答案和解析>>

同步练习册答案