精英家教网 > 高中数学 > 题目详情
12.下列判断错误的是(  )
A.若随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21
B.若n组数据(x1,y1)…(xn,yn)的散点都在y=-2x+1上,则相关系数r=-1
C.若随机变量ξ服从二项分布:ξ~B(5,$\frac{1}{5}$),则Eξ=1
D.“am2<bm2”是“a<b”的必要不充分条件

分析 根据正态分布的对称性,可判断A;根据相关系数的定义,可判断B;根据服从二项分布的变量的期望值公式,可判断C;根据不等式的基本性质,可判断D;

解答 解:∵P(ξ≤4)=0.79,
∴P(ξ≥4)=1-0.79=0.21,
又∵随机变量ξ服从正态分布N(1,σ2),
∴P(ξ≤-2)=(ξ≥4)=0.21,故A正确;
若n组数据(x1,y1)…(xn,yn)的散点都在y=-2x+1上,
则x,y成负相关,且相关关系最强,
此时相关系数r=-1,故B正确;
若随机变量ξ服从二项分布:ξ~B(5,$\frac{1}{5}$),
则Eξ=5×$\frac{1}{5}$=1
“am2<bm2”时,m2>0,故“a<b”,
“a<b,m=0”时,“am2<bm2”不成立,
故“am2<bm2”是“a<b”的充分不必要条件,故D错误;
故选:D

点评 本题考查的知识点是命题的真假判断与应用,本题综合性强,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求曲线y=$\frac{1}{x}$在点(2,$\frac{1}{2}$)处的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}中,a3=2,a7=1,又数列{$\frac{1}{1+{a}_{n}}$}是等差数列,则a11等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.高一(1)班学生期中考试表明:①36人的数学成绩不低于80分;②20人的物理成绩不低于80分;③15人的数学、物理成绩均不低于80分,则高一(1)班至少有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设S为非空数集,且满足:①2∉s;②若a∈S,则$\frac{1}{2-a}$∈S.证明:
(1)对一切n∈N*,n≥3,有$\frac{n}{n-1}$∉S;
(2)S或者是单元素集,或者是无限集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an},a7+a4=2,a5a6=-8,求a1+a10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设x>0,y>0.z>0,且x+y=2,x2+y2+z2=6,则xy+yz+zx的取值范围是(2$\sqrt{2}$,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法
①将一组数据中的每一个数都加上同一个常数后,该组数据方差不变;
②设回归直线方程为$\hat y=-5x+3$,则变量x每增加1个单位,y就平均增加5个单位;
③某人射击一次,击中目标的概率为0.6,那么他连续5次射击时,恰有4次击中目标的概率是$C_5^4×{0.6^4}×0.4$
其中正确的说法是(  )
A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求满足[$\sqrt{n+\sqrt{n+\sqrt{n}}}$]=2的正整数n.

查看答案和解析>>

同步练习册答案