精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x的焦点F是等腰直角△ABF的直角顶点,A,B在抛物线上,
(1)求证:A,B关于x轴对称;
(2)求△ABF的面积.
(1)证明:∵抛物线y2=4x的焦点F是等腰直角△ABF的直角顶点,
∴|AF|=|BF|
∴A、B到准线的距离相等
∴A、B两点的横坐标相等
∴A、B两点的纵坐标相反
∴A、B关于x轴对称;
(2)由题意,设A(x,y),则|y|=|x-1|
∵y2=4x,∴|x-1|2=4x
∴x2-6x+1=0
x=3±2
2

x=3+2
2
时,|y|=2+2
2
,∴△ABF的面积为(2+2
2
2=12+8
2

x=3-2
2
时,|y|=2
2
-2,∴△ABF的面积为(2
2
-2)2=12-8
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

抛物线顶点在原点,焦点在x轴上,且过点(8,8),焦点为F
(1)求抛物线的焦点坐标和标准方程;
(2)P是抛物线上一动点,M是PF的中点,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点A(4,8),B(x1,y1),C(x2,y2)在抛物线y2=2px上,△ABC的重心与此抛物线的焦点F重合,M为BC中点.
(Ⅰ)求该抛物线的方程和焦点F的坐标;
(Ⅱ)求BC所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

准线方程为x=-1的抛物线的标准方程为(  )
A.y2=-4xB.y2=4xC.y2=-2xD.y2=2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是以F1,F2为焦点的椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=
1
2
,则此椭圆的离心率为(  )
A.
1
2
B.
2
3
C.
1
3
D.
5
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点M在抛物线y2=4x上,F是抛物线的焦点,若∠xFM=60°,则FM的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一辆卡车高3米,宽2米,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的2倍,若拱口宽为2a米,求使卡车通过的a的最小整数值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设M(x0,y0)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x0的取值范围是(  )
A.(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点A(0,2)且和抛物线C:y2=6x相切的直线l方程为______.

查看答案和解析>>

同步练习册答案