精英家教网 > 高中数学 > 题目详情

【题目】某班级期末考试后,对数学成绩在分以上(含分)的学生成绩进行统计,其频率分布直方图如图所示.其中分数段的人数为.

1)根据频率分布直方图,写出该班级学生数学成绩的众数;

2)现根据学生数学成绩从第一组和第四组(从低分段到高分段依次为第一组,第二组,,第五组)中任意选出两人形成学习小组.若选出的两人成绩之差大于分则称这两人为“最佳组合”,试求选出的两人为“最佳组合”的概率.

【答案】1)众数为;(2.

【解析】

1)根据最高矩形底边的中点值为众数可得出答案;

2)先计算出第一组的人数为,分别记为,第四组的人数为,分别记为,列举出所有的基本事件,记事件选出的两人为“最佳组合”,确定事件所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率.

1)由频率分布直方图可知,该班级学生数学成绩的众数为

2)第一组的人数为,分别记为

第四组的人数为,分别记为

在第一组和第四组中任意选出两人形成学习小组,所有的基本事件有:,共种,

记事件选出的两人为“最佳组合”,则所选的两人必须是来自不同的两组,

事件所包含的基本事件有:,共种,

因此,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知直线2xy﹣1=0与直线x﹣2y+1=0交于点P

求过点P且平行于直线3x+4y﹣15=0的直线的方程;(结果写成直线方程的一般式)

求过点P并且在两坐标轴上截距相等的直线方程(结果写成直线方程的一般式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个人排成一排,在下列情况下,各有多少种不同排法?

1)甲不在两端;

2)甲、乙、丙三个必须在一起;

3)甲、乙必须在一起,且甲、乙都不能与丙相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知⊙O的直径AB=3,点C为⊙O上异于AB的一点,平面ABC,且,点M为线段VB的中点.

1)求证:平面VAC

2)若AB与平面VAC所成角的余弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】谢尔宾斯基三角形(Sierpinski triangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.在一个正三角形中,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的部分,黑色三角形为剩下的部分,我们称此三角形为谢尔宾斯基三角形.若在图(3)内随机取一点,则此点取自谢尔宾斯基三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.为真命题,则均为假命题;

B.命题,则的逆否命题为真命题;

C.等比数列的前项和为,若的否命题为真命题;

D.平面向量的夹角为钝角的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=(kx+ex2x,若fx)<0的解集中有且只有一个正整数,则实数k的取值范围为 (  )

A. [ B. ]

C. [D. [

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的值;

(2)已知某班共有人,记这人生日至少有两人相同的概率为,将一年看作365天.

(i)求的表达式;

(ii)估计的近似值(精确到0.01).

参考数值:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a0,且a≠1.命题P:函数fx)=logax在(0+∞)上为增函数;命题Q:函数gx)=x22ax+4有零点.

1)若命题PQ满足PQ假,求实数a的取值范围;

2)命题S:函数yfgx))在区间[2+∞)上值恒为正数.若命题S为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案