精英家教网 > 高中数学 > 题目详情

【题目】学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):
规定若满意度不低于98分,测评价该教师为“优秀”.

(1)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
记ξ表示抽到评价该教师为“优秀”的人数,求ξ的分布列及数学期望.
(2)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,

【答案】
(1)解:设Ai表示所取3人中有i个人评价该教师为“优秀”,

至多1人评价该教师为“优秀”记为事件A,

则P(A)=P(A0)+P(A1)= =


(2)解:由已知得ξ的可能取值为0,1,2,3,

P(ξ=0)=( 3=

P(ξ=1)= =

P(ξ=2)= =

P(ξ=3)=( 3=

∴ξ的分布列为:

ξ

0

1

2

3

P

Eξ= =0.9.


【解析】(1)设Ai表示所取3人中有i个人评价该教师为“优秀”,至多1人评价该教师为“优秀”记为事件A,由P(A)=P(A0)+P(A1),能求出至多有1人评价该教师是“优秀”的概率.(2)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列及数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问部分职工,根据被访问职工对该部门的评分,绘制频率分布直方图(如图所示).
(1)求频率分布表中①、②、③位置相应数据,并在答题纸上完成频率分布直方图;

组号

分组

频数

频率

第1组

[50,60)

5

0.050

第2组

[60,70)

0.350

第3组

[70,80)

30

第4组

[80,90)

20

0.200

第5组

[90,100]

10

0.100

合计

1.00


(2)为进一步了解情况,该企业决定在第3,4,5组中用分层抽样抽取5名职工进行座谈,求第3,4,5组中各自抽取的人数;
(3)求该样本平均数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某休闲农庄有一块长方形鱼塘ABCD,AB=50米,BC=25 米,为了便于游客休闲散步,该农庄决定在鱼塘内建三条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且∠EOF=90°.

(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对两个变量y和x进行回归分析,得到一组样本数据:(x1 , y1),(x2 , y2),…,(xn , yn),则下列说法中不正确的是(
A.由样本数据得到的回归方程 = x+ 必过样本中心(
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好
D.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检验学习情况,某培训机构于近期举办一场竞赛活动,分别从甲、乙两班各抽取10名学员的成绩进行统计分析,其成绩的茎叶图如图所示(单位:分),假设成绩不低于90分者命名为“优秀学员”.

(1)分别求甲、乙两班学员成绩的平均分(结果保留一位小数);

(2)从甲班4名优秀学员中抽取两人,从乙班2名80分以下的学员中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角中,∠,D、E分别是AB、BC边的中点,沿DE将折起至,且∠.

(Ⅰ)求四棱锥F-ADEC的体积;

(Ⅱ)求证:平面ADF⊥平面ACF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax﹣1,(a为实数),g(x)=lnx﹣x
(1)讨论函数f(x)的单调区间;
(2)求函数g(x)的极值;
(3)求证:lnx<x<ex(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列,记,若数列满足:“存在,使得只要),必有”,则称数列具有性质.

(Ⅰ)若数列满足判断数列是否具有性质?是否具有性质

(Ⅱ)求证:“是有限集”是“数列具有性质”的必要不充分条件;

(Ⅲ)已知是各项为正整数的数列,且既具有性质,又具有性质,求证:存在整数,使得是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,∠PAQ是村里一个小湖的一角,其中∠PAQ=60°.为了给村民营造丰富的休闲环境,村委会决定在直线湖岸AP与AQ上分别建观光长廊AB与AC,其中AB是宽长廊,造价是800元/米;AC是窄长廊,造价是400元/米;两段长廊的总造价预算为12万元(恰好都用完);同时,在线段BC上靠近点B的三等分点D处建一个表演舞台,并建水上通道AD(表演舞台的大小忽略不计),水上通道的造价是600元/米.

(1)若规划宽长廊AB与窄长廊AC的长度相等,则水上通道AD的总造价需多少万元?
(2)如何设计才能使得水上通道AD的总造价最低?最低总造价是多少万元?

查看答案和解析>>

同步练习册答案