精英家教网 > 高中数学 > 题目详情
某圆锥曲线有两个焦点F1、F2,其上存在一点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则此圆锥曲线的离心率等于(  )
分析:根据|PF1|:|F1F2|:|PF2|=4:3:2,不妨设|PF1|=4m,|F1F2|=3m,|PF2|=2m,再进行分类讨论,确定曲线的类型,从而求出曲线r的离心率.
解答:解:根据|PF1|:|F1F2|:|PF2|=4:3:2,不妨设|PF1|=4m,|F1F2|=3m,|PF2|=2m,
∴|PF1|+|PF2|=6m>|F1F2|=3m,此时曲线为椭圆,且曲线r的离心率等于
3m
6m
=
1
2

|PF1|-|PF2|=2m<|F1F2|=3m,此时曲线为双曲线,且曲线r的离心率等于
3m
2m
=
3
2

故选B.
点评:本题主要考查了圆锥曲线的共同特征.关键是利用圆锥曲线的定义来解决.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年吉林省长春市高三第一次调研测试文科数学试卷(解析版) 题型:选择题

某圆锥曲线有两个焦点F1、F2,其上存在一点满足=4:3:2,则此圆锥曲线的离心率等于

A.   B.或2      C.或2   D.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某圆锥曲线有两个焦点F1、F2,其上存在一点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则此圆锥曲线的离心率等于(  )
A.
1
2
或2
B.
1
2
3
2
C.
3
2
2
3
D.
2
3
或2

查看答案和解析>>

科目:高中数学 来源: 题型:

7.         某圆锥曲线有两个焦点F1F2,其上存在一点满足=4:3:2,则此圆锥曲线的离心率等于

       A.      B.或2 C.或2 D.

查看答案和解析>>

科目:高中数学 来源:湖北省期末题 题型:单选题

某圆锥曲线有两个焦点F1、F2,其上存在一点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则此圆锥曲线的离心率等于
[     ]
A.或2
B.
C.
D.或2

查看答案和解析>>

同步练习册答案