精英家教网 > 高中数学 > 题目详情

【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段后画出如下频率分布直方图.观察图形的信息,回答下列问题:

(1)估计这次考试的众数与中位数(结果保留一位小数);

(2)估计这次考试的及格率(60分及以上为及格)和平均分.

【答案】

【解析】

解:()众数是最高小矩形中点的横坐标,所以众数为m=75(分);

前三个小矩形面积为0.01×10+0.015×10+0.015×10=0.4

中位数要平分直方图的面积,

)依题意,60及以上的分数所在的第三、四、五、六组,

频率和为 (0.015+0.03+0.025+0.005*10=0.75

所以,抽样学生成绩的合格率是75%

利用组中值估算抽样学生的平均分45f1+55f2+65f3+75f4+85f5+95f6

=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71

估计这次考试的平均分是71分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设某校新、老校区之间开车单程所需时间为只与道路畅通状况有关,对其容量为的样本进行统计,结果如图:

(分钟)

25

30

35

40

频数(次)

20

30

40

10

1)求的分布列与数学期望

2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是(

A.45
B.50
C.55
D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCDEF分别是ABPD的中点,且PA=AD

(Ⅰ)求证:AF∥平面PEC

(Ⅱ)求证:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0 , y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣ 时,切线MA的斜率为﹣

(1)求P的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的椭圆 )的左右焦点分别为 为椭圆上的任意一点,且 成等差数列.

(1)求椭圆的标准方程;

(2)直线 交椭圆于 两点,若点始终在以为直径的圆外,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点( )引直线l与曲线y= 相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于( )
A.
B.-
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABCA1B1C1中,侧面AA1C1C是菱形,AC1A1C交于点O,点EAB的中点.

(1)求证:OE∥平面BCC1B1.

(2)AC1A1B,求证:AC1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,过椭圆M: (a>b>0)右焦点的直线x+y﹣ =0交M于A,B两点,P为AB的中点,且OP的斜率为
(1)求M的方程
(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.

查看答案和解析>>

同步练习册答案