精英家教网 > 高中数学 > 题目详情

【题目】已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为(  )

(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)

A. 4.56%B. 13.59%C. 27.18%D. 31.74%

【答案】B

【解析】

由题意P(﹣3ξ3)=68.27%P(﹣6ξ6)=95.45%,可得P3ξ6)=95.45%68.27%),即可得出结论.

解:由题意P(﹣3ξ3)=68.27%P(﹣6ξ6)=95.45%

P3ξ6)=95.45%68.27%)=13.59%

故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列满足an=2an-1+2n+1(n∈N*n≥2), .

(1)求的值;

(2)是否存在一个实数t,使得 (n∈N*),且数列{}为等差数列?若存在,求出实数t;若不存在,请说明理由;

(3)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一智能扫地机器人在处发现位于它正西方向的处和北偏东30°方向上的处分别有需要清扫的垃圾,红外线感应测量发现机器人到的距离比到的距离少0.4米,于是选择沿路线清扫,已知智能扫地机器人的直线行走速度为0.2,忽略机器人吸入垃圾及在处旋转所用时间,10秒钟完成了清扫任务.

1两处垃圾的距离是多少?

2)智能扫地机器人此次清扫行走路线的夹角的正弦值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

【答案】(1);.

(2).

【解析】试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.

试题解析】

(Ⅰ)圆的参数方程为为参数).

直线的直角坐标方程为.

(Ⅱ)由直线的方程可得点,点.

设点,则 .

.

由(Ⅰ)知,则 .

因为,所以.

型】解答
束】
23

【题目】选修4-5:不等式选讲

已知函数 .

(Ⅰ)若对于任意 都满足,求的值;

(Ⅱ)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月9-25日第23届冬奥会在韩国平昌举行.4年后第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:

收看

没收看

男生

60

20

女生

20

20

(Ⅰ)根据上表说明,能否有的把握认为收看开幕式与性别有关?

(Ⅱ)现从参与问卷调查且收看了开幕式的学生中采用按性别分层抽样的方法选取8人参加2022年北京冬奥会志愿者宣传活动.

(ⅰ)问男女学生各选取多少人?

(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张型型桌子分别需要1小时和2小时,漆工油漆一张型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张型型桌子分别获利润2千元和3千元.

(1)列出满足生产条件的数学关系式,并画出可行域;

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张型型桌子分别需要1小时和2小时,漆工油漆一张型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张型型桌子分别获利润2千元和3千元.

(1)列出满足生产条件的数学关系式,并画出可行域;

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc;

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)为了计算10人中选出9人参加比赛的情况有多少种,我们可以发现它与10人中选出1人不参加比赛的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数,且满足,当时, ,当时, 的最大值为.

(1)求实数的值;

(2)函数,若对任意的,总存在,使不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案