【题目】已知函数,.
(1)讨论在区间上的单调性;
(2)若时,,求整数的最小值.
【答案】(1)详见解析(2)
【解析】
(1)分别在、和三种情况下,根据导函数的正负得到原函数的单调区间;
(2)将问题转化为在上恒成立,则,结合零点存在定理可确定的最大值为,,利用导数可求得其值域,进而得到整数的最小值.
(1)由题意得:,
令,则,
当,即时,,,在上单调递增;
当,即或时,
令,解得:,,
当时,,
当时,;当时,,
在上单调递减,在上单调递增;
当时,,
当时,;当和时,,
在,上单调递增,在上单调递减;
综上所述:当时,在,上单调递增,在上单调递减;当时,在上单调递增;当时,在上单调递减,在上单调递增.
(2)由得:在上恒成立,
令,则,
令,则,,
,在区间上存在零点,
设零点为,则,
当时,;当时,,
在上单调递增,在上单调递减,
,,
设,则,
上单调递增,,即,
整数的最小值为.
科目:高中数学 来源: 题型:
【题目】天津市某学校组织教师进行“学习强国”知识竞赛,规则为:每位参赛教师都要回答3个问题,且对这三个问题回答正确与否相互之间互不影响,若每答对1个问题,得1分;答错,得0分,最后按照得分多少排出名次,并分一、二、三等奖分别给予奖励.已知对给出的3个问题,教师甲答对的概率分别为,,p.若教师甲恰好答对3个问题的概率是,则________;在前述条件下,设随机变量X表示教师甲答对题目的个数,则X的数学期望为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,若a=5sin(B),c=5且O为△ABC的外心,G为△ABC的重心,则OG的最小值为( )
A.1B.C.1D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆与轴相切于点,过点,分别作动圆异于轴的两切线,设两切线相交于,点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过的直线与曲线相交于不同两点,若曲线上存在点,使得成立,求实数的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,椭圆以的长轴为短轴,且两个椭圆的离心率相同,设O为坐标原点,点A、B分别在椭圆、上,若,则直线AB的斜率k为( ).
A.1B.-1C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果对于函数定义域内任意的两个自变量的值,,当时,都有,且存在两个不相等的自变量值,,使得,就称为定义域上的“不严格的增函数”.下列所给的四个函数中为“不严格增函数”的是( )
A.;B.;
C.;D..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(Ⅰ)若曲线在点处的切线方程为,其中是自然对数的底数,求的值:
(Ⅱ)若函数是内的减函数,求正数的取值范围;
(Ⅲ)若方程无实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,底面,,,,.
(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)当直线与平面所成的角为45°时,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com