精英家教网 > 高中数学 > 题目详情

如图,圆与圆交于两点,以为切点作两圆的切线分别交圆和圆两点,延长交圆于点,延长交圆于点.已知

(1)求的长;
(2)求

(1);(2).

解析试题分析:本题主要考查弦切角定理、三角形相似、切割线定理等基础知识,考查学生的逻辑推理能力、分析问题解决问题的能力.第一问,由于AC、AD分别是圆N、圆M的切线,所以利用弦切角定理,得到,所以相似三角形的判定,得△∽△,所以可得到边的比例关系,从而求出边长;第二问,根据切割线定理,得到2组关系式,2个式子相除得到一个等式,再结合第一问的结论,解方程,得到的值.
试题解析:(1)根据弦切角定理,知
∴△∽△ ,则
. 5分
(2)根据切割线定理,知
两式相除,得(*).
由△∽△
,又,由(*)
.                                          10分
考点:弦切角定理、三角形相似、切割线定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.
(1)求直线CD的方程;
(2)求圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆:轴相切,点为圆心.
(1)求的值;
(2)求圆轴上截得的弦长;
(3)若点是直线上的动点,过点作直线与圆相切,为切点.求四边形面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,以O为圆心的圆与直线相切.
(1)求圆O的方程;
(2)圆O与轴相交于两点,圆内的动点满足
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,以为圆心的圆与直线相切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆满足:①截轴所得弦长为;②被轴分成两段圆弧,其弧长的比为;③圆心到直线的距离为的圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l:x-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知直线与圆,则上各点到的距离的最小值为_____________。

查看答案和解析>>

同步练习册答案