【题目】如图,某企业的两座建筑物AB,CD的高度分别为20m和40m,其底部BD之间距离为20m.为响应创建文明城市号召,进行亮化改造,现欲在建筑物AB的顶部A处安装一投影设备,投影到建筑物CD上形成投影幕墙,既达到亮化目的又可以进行广告宣传.已知投影设备的投影张角∠EAF为,投影幕墙的高度EF越小,投影的图像越清晰.设投影光线的上边沿AE与水平线AG所成角为α,幕墙的高度EF为y(m).
(1)求y关于α的函数关系式,并求出定义域;
(2)当投影的图像最清晰时,求幕墙EF的高度.
科目:高中数学 来源: 题型:
【题目】本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);
(3)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图,该图象与轴交于点,与轴交于点两点,为图象的最高点,且的面积为.
(1)求的解析式及其单调递增区间;
(2)若,且,求的值.
(3)若将的图象向右平移个单位,再将所得图象上所有点的横坐标伸长为原来的倍(纵坐标不变),得到函数的图像.试求关于的方程在的所有根的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,若存在常数,使得对任意的成立,则称函数是“类周期函数”.
(1)判断函数,是否是“类周期函数”,并证明你的结论;
(2)求证:若函数是“类周期函数”,且是偶函数,则是周期函数;
(3)求证:当时,函数一定是“类周期函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在上的函数是奇函数.
(1)求函数的值域;
(2)若在上单调递减,根据单调性定义求实数b的取值范围;
(3)在(2)的条件下,若方程在区间上有且仅有两个不同的根,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com