精英家教网 > 高中数学 > 题目详情

【题目】宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“菱草形段”第一个问题“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,问底子(每层三角形边菱草束数,等价于层数)几何?”中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上束,下一层束,再下一层束,……,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层菱草束数),则本问题中三角垛底层菱草总束数为__________

【答案】120

【解析】

试题分析:由题意,第n层茭草束数为1+2+…+n=,利用1+3+6+…+=680,求出n,即可得出结论.

解:由题意,第n层茭草束数为1+2+…+n=

∴1+3+6+…+=680

即为[nn+1)(2n+1+nn+1]=nn+1)(n+2=680

即有nn+1)(n+2=15×16×17

∴n=15=120

故答案为:120

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过抛物线上一点作抛物线的切线轴于点.

(1)判断的形状;

(2) 若两点在抛物线上,点满足,若抛物线上存在异于的点,使得经过三点的圆与抛物线在点处的有相同的切线,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1) 讨论的单调性;

(2) ,当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有(  )

A.120种B.240种C.144种D.288种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面侧面为棱的中点,在棱上,.

(1)求证:的中点;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某热带风暴中心B位于海港城市A东偏南30°的方向,与A市相距400km.该热带风暴中心B的速度向正北方向移动,影响范围的半径是350km.问:从此时起,经多长时间后A市将受热带风暴影响,大约受影响多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种汽车的元件,该元件是经过三道工序加工而成的,三道工序加工的元件合格率分别为.已知每道工序的加工都相互独立,三道工序加工都合格的元件为一等品;恰有两道工序加工合格的元件为二等品;其它的为废品,不进入市场.

(Ⅰ)生产一个元件,求该元件为二等品的概率;

(Ⅱ)若从该工厂生产的这种元件中任意取出3个元件进行检测,求至少有2个元件是一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,DAC的中点,四边形BDEF是菱形,平面平面ABC

若点M是线段BF的中点,证明:平面AMC

求平面AEF与平面BCF所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案