精英家教网 > 高中数学 > 题目详情
抛物线y=x2在点M()处的切线的倾斜角是(   )
A.30°B.45°C.60°D.90°
B

试题分析:因为y=x2,所以,,切线的斜率为1,切线的倾斜角为45°,故选B。
点评:简单题,切线的斜率是函数在切点的导数值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知P在抛物线上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果双曲线上一点P到它的右焦点距离是8,那么点P到它的左焦点的距离是( )    
A.4B.12C.4或12D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的离心率为2,则双曲线的离心率为(    )
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点到双曲线的一条渐近线的距离为,则该双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以双曲线的离心率为半径,右焦点为圆心的圆与双曲线的渐近线相切,则的值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,设点分别是椭圆的左、右焦点,为椭圆上任意一点,且最小值为

(1)求椭圆的方程;
(2)若动直线均与椭圆相切,且,试探究在轴上是否存在定点,点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆两点,交直线于点.若,证明:的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定点M(3,)与抛物线=2x上的点P的距离为,P到抛物线准线l的距为,则取最小值时,P点的坐标为
A.(0,0)B.(1,C.(2,2)D.(,-

查看答案和解析>>

同步练习册答案