精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=2cos2x+2$\sqrt{3}sinxcosx(x∈{R})$.
(1)求函数f(x)的单调递增区间;
(2)若方程f(x)-t=1在$x∈[0,\frac{π}{2}]$内恒有两个不相等的实数解,求实数t的取值范围.

分析 (1)利用二倍角和辅助角公式将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)根据$x∈[0,\frac{π}{2}]$求解f(x)的图象范围,利用数形结合,可求实数t的取值范围.

解答 解:(1)函数f(x)=2cos2x+2$\sqrt{3}sinxcosx(x∈{R})$.
化简可得:f(x)=1+cos2x+$\sqrt{3}$sin2x=2sin(2x+$\frac{π}{6}$)+1.
由$-\frac{π}{2}+2kπ≤$2x+$\frac{π}{6}$≤$\frac{π}{2}+2kπ$上是单调增函数,
解得:$-\frac{π}{3}+kπ$≤x≤$\frac{π}{6}+kπ$,(k∈Z).
故得函数f(x)的单调递增区间为
[$-\frac{π}{3}$+kπ,$\frac{π}{6}+kπ$],(k∈Z).
(2)由(1)可得f(x)=2sin(2x+$\frac{π}{6}$)+1,
当$x∈[0,\frac{π}{2}]$时,
则2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$].
方程f(x)-t=1在$x∈[0,\frac{π}{2}]$内恒有两个不相等的实数解,
即:2sin(2x+$\frac{π}{6}$)+1-t=1,
可得:sin(2x+$\frac{π}{6}$)=$\frac{1}{2}$t在$x∈[0,\frac{π}{2}]$内恒有两个不相等的实数解,
设2x+$\frac{π}{6}$=u
那么函数f(x)转化为g(u).
等价于g(u)=sinu与函数y=$\frac{1}{2}$t有两个不同的交点.
∵g(u)=sinu的图象为:(如图)
由图象可得:sin$\frac{π}{6}$≤$\frac{1}{2}t$<1,即$\frac{1}{2}$≤$\frac{1}{2}t$<1,
解得:1≤t<2.
故得实数t的取值范围是[1,2).

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.同时考查了函数之间的零点问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知曲线C的极坐标方程ρ=2cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{5}}{5}t}\\{y=\frac{2\sqrt{5}}{5}t}\end{array}\right.$(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与y轴的交点是M,N是曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|-1<x<2},B={x|-2≤x<0},则A∩B=(  )
A.{x|-1<x<0}B.{x|-2≤x<2}C.{x|-2<x<2}D.{x|x<-2,或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.命题:两条直线垂直同一个平面,那么这两条直线平行.将这个命题用符号语言表示为:若直线m⊥平面α,直线n⊥平面α,则m∥n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.同时满足两个条件:(1)定义域内是减函数;(2)定义域内是奇函数的函数是(  )
A.f(x)=-x|x|B.$f(x)=x+\frac{1}{x}$C.f(x)=tanxD.$f(x)=\frac{lnx}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=9x-a•3x+1+a2(x∈[0,1],a∈R),记f(x)的最大值为g(a).
(Ⅰ)求g(a)解析式;
(Ⅱ)若对于任意t∈[-2,2],任意a∈R,不等式g(a)≥-m2+tm恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{4}+\frac{y^2}{b^2}$=1(0<b<2)的左、右焦点分别为F1,F2,直线l过F2且与椭圆相交于不同的两点A,B,那么△ABF1的周长(  )
A.是定值4
B.是定值8
C.不是定值,与直线l的倾斜角大小有关
D.不是定值,与b取值大小有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设△ABC的内角A、B、C的对边分别为a、b、c,且cosA=$\frac{3}{5}$,cosB=$\frac{5}{13}$,b=3,则c=(  )
A.$\frac{14}{5}$B.$\frac{7}{5}$C.$\frac{63}{20}$D.$\frac{33}{20}$

查看答案和解析>>

同步练习册答案