精英家教网 > 高中数学 > 题目详情

【题目】程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )

A. B. C. D.

【答案】D

【解析】分析根据题意可得每个孩子所得棉花的斤数构成一个等差数列,其中公差为17,项数为8,前8项和为996,应先由前n项和公式求首项,再由等差数列通项公式求第8项。

详解:根据题意可得每个孩子所得棉花的斤数构成一个等差数列其中

由等差数列前n项和公式可得,

解得

由等差数列通项公式得

故选D。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,解关于的不等式

(2)若对任意,都存在,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数mR

1)讨论fx)的单调性;

2)若m∈(-10),证明:对任意的x1x2[11-m]4fx1+x25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为 (θ为参数),直线l的极坐标方程为ρcos=2.

(1)写出曲线C的普通方程和直线l的直角坐标方程;

(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:

男性

女性

合计

爱好

10

不爱好

8

合计

30

已知在这30人中随机抽取1人抽到爱好运动的员工的概率是.

(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?

(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为,求的分布列、数学期望.参考数据:

0.10

0.05

0.025

0.01

0.005

0.001

2.706

3.841

5.024/span>

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100/平方米,底面的建造成本为160/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).

1)将V表示成r的函数Vr),并求该函数的定义域;

2)讨论函数Vr)的单调性,并确定rh为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在浙江省和青海省各取面积大小一样的AB两块区域,分别调查人均可支配收入.获得数据显示,浙江省的A区域的人均可支配收入为35537元,青海省的B区域的人均可支配收入为24542.

1)能否得到这两块区域的人均可支配收入为(元)?

2)若“A区域为70万人,B区域为30万人,请问这两块区域的人均可支配收入为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{}的前项和为Sn,且Sn=n(n+1)(n∈N*).

(1)若数列满足:,求数列的通项公式;

(2)令,求数列{}的前n项和Tn.

(3) ,(n为正整数),问是否存在非零整数,使得对任意正整数n,都有若存在,求的值,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,f(t)表示学生注意力随时间t(分钟)的变化规律\left(f(t)越大,表明学生注意力越集中),经过实验分析得知:

(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?

(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?

(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?

查看答案和解析>>

同步练习册答案