精英家教网 > 高中数学 > 题目详情

【题目】如图,已知是椭圆的左焦点,且椭圆经过点.

)求椭圆的方程;

)若过点的直线交椭圆两点,线段的中点为,过且与垂直的直线与轴和轴分别交于两点,记的面积分别为.若,求直线的方程.

【答案】;(.

【解析】

)由左焦点及椭圆过的点及之间的关系求出椭圆的方程;

)设直线的方程,与椭圆方程联立求出两根之和及之积,写出中点坐标,进而写出直线的方程,求出面积之比,由题意得直线的斜率,进而求出直线的方程.

)设椭圆的焦距为

由题意得:,解得:

所以,椭圆的方程为

)由题意得,直线的斜率不为零,

设直线的方程为,设点

联立与椭圆的方程,消去,整理得

由韦达定理得

所以线段的中点的坐标

所以直线的方程为,即

由题意得,

,整理得,则

所以直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点、上顶点分别为AB,坐标原点到直线AB的距离为,且.

1)求椭圆C的方程;

2)过椭圆C的左焦点的直线交椭圆于MN两点,且该椭圆上存在点P,使得四边形MONP(图形上字母按此顺序排列)恰好为平行四边形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面分别是的中点.

(1)求三棱锥的体积;

(2)若异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且存在不同的实数x1x2x3,使得fx1=fx2=fx3),则x1x2x3的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQQRRP,要求街道PQAB垂直,街道PRAC垂直,直线PQ表示第三条街道。

(1)如果P位于弧BC的中点,求三条街道的总长度;

(2)由于环境的原因,三条街道PQPRQR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有一组圆,下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点;其中真命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了放射性物质因衰变而减少这一规律.已知样本中碳的质量随时间(单位:年)的衰变规律满足表示碳原有的质量),则经过年后,碳的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳的质量是原来的,据此推测良渚古城存在的时期距今约在________年到年之间.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设长方体中,的中点,点在线段.

1)试在线段上确定点的位置,使得异面直线所成角为,并请说明你的理由;

2)在满足(1)的条件下,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求的单调区间;

(2)求函数在上的最值;

(3)时,若函数恰有两个不同的零点,求的取值范围.

查看答案和解析>>

同步练习册答案