精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C所对的边分别是a、b、c,若c=4,b=7,BC边上的中线AD的长为
72
,则a=
9
9
分析:根据余弦定理分在两个三角形△ABD、△ABC中表示出角B的余弦值,将AB=4,AC=7,AD=
7
2
,代入即可得到答案.
解答:解:由题意知,BD=
1
2
BC,
再由余弦定理可得 cosB=
AB2+BD2-AD2
2AB•BD
=
AB2+BC2-AC2
2AB•BC

将AB=4,AC=7,AD=
7
2
,BD=
1
2
BC,一并代入上式,即可求得BC=9,
故答案为 9.
点评:本题主要考查余弦定理的应用,余弦定理在解三角形中应用非常广泛,要熟练掌握,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案