已知函数(,),.
(Ⅰ)证明:当时,对于任意不相等的两个正实数、,均有成立;
(Ⅱ)记,
(ⅰ)若在上单调递增,求实数的取值范围;
(ⅱ)证明:.
(Ⅰ)详见解析;(Ⅱ)(ⅰ),(ⅱ) 详见解析.
解析试题分析:(Ⅰ)当时,对于任意不相等的两个正实数、,均有成立,只需求出与的解析式,两式作差得,判断符号即可证明;(Ⅱ)记,若在上单调递增,求实数的取值范围,首先求出的解析式,从而得,若它在上单调递增,即它的导函数在上恒大于零,得恒成立,这是恒成立问题,只需把含有的放到不等式的一侧,不含的放到不等式的另一侧,即,转化为求的最大值问题,可利用导数求出最大值,从而可得实数的取值范围. 证明:,因为,只需证它的最小值为,可利用导数证明它的最小值为即可.
试题解析:(Ⅰ)证明: ,
,
,则 ①
,则,②
由①②知.
(Ⅱ)(ⅰ),,
令,则在上单调递增.
,则当时,恒成立,
即当时,恒成立.
令,则当时,,
故在上单调递减,从而,
故.(14分)
(ⅱ)法一:,令,
则表示上一点与直线上一点距离的平方.
令,则,
可得在上单调递减,在上单调递增,
故,则,
直线与的图象相切与点,点到直线的距离为,
则,故.
法二:,
令,则.
令
科目:高中数学 来源: 题型:解答题
已知函数.
(I) 当,求的最小值;
(II) 若函数在区间上为增函数,求实数的取值范围;
(III)过点恰好能作函数图象的两条切线,并且两切线的倾斜角互补,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某商场预计2014年从1月起前个月顾客对某种商品的需求总量(单位:件)
(1)写出第个月的需求量的表达式;
(2)若第个月的销售量(单位:件),每件利润(单位:元),求该商场销售该商品,预计第几个月的月利润达到最大值?月利润的最大值是多少?(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.
(1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图象在与轴交点处的切线方程是.
(I)求函数的解析式;
(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,恒过定点.
(1)求实数;
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,直接写出的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com