精英家教网 > 高中数学 > 题目详情
2.函数f(x)=1+sinx在区间[0,$\frac{π}{2}$]上的最小值为(  )
A.-1B.0C.1D.2

分析 由条件利用正弦函数的定义域和值域求得函数f(x)=1+sinx在区间[0,$\frac{π}{2}$]上的最小值.

解答 解:由于y=sinx在区间[0,$\frac{π}{2}$]上的最小值为0,∴f(x)=1+sinx在区间[0,$\frac{π}{2}$]上的最小值1+0=1,
故选:C.

点评 本题主要考查正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知f(x)是定义在(-∞,-1)∪(1,+∞)上的奇函数,当x>1时,f(x)=$\frac{x}{x-1}$
(1)当x<-1时,求f(x)的解析式;
(2)求函数$f(\frac{1}{x})$的定义域;
(3)证明f(x)在(1,+∞)上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-2≥0}\\{x-3y+4≥0}\\{x-y-2≤0}\end{array}\right.$,则z=(x-1)2+(y-5)2的取值范围为(  )
A.[$\sqrt{10}$,20]B.[$\sqrt{10}$,26]C.[10,20]D.[10,26]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线9x2-16y2=144的渐近线方程是(  )
A.y=±$\frac{9}{16}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{16}{9}$xD.y=±$\frac{4}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知双曲线中心在原点,离心率等于2,且一个焦点坐标为(4,0),求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{6}(x≤0)}\\{1-2x(x>0)}\end{array}}$,则f(f(3))=(  )
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若双曲线$\frac{x^2}{4}-\frac{y^2}{9}$=1上一点P到左焦点的距离是3,则点P到右焦点的距离为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有下列命题:
①在函数y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的图象中,相邻两个对称中心的距离为π;
②命题:“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分条件;
④已知命题p:对任意的x∈R,都有sinx≤1,则¬p是:存在x0∈R,使得sinx0>1;
⑤命题“若0<a<1,则loga(a+1)>loga(1+$\frac{1}{a}$)”是真命题;
⑥在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,则角C等于30°或150°.
其中所有真命题的序号是④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若(1-3x)7展开式的第4项为280,则$\lim_{n→∞}({x+{x^2}+…+{x^n}})$=$-\frac{2}{5}$.

查看答案和解析>>

同步练习册答案