精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是(

A.k≤6
B.k≤7
C.k≤8
D.k≤9

【答案】B
【解析】解:根据程序框图,运行结果如下:
S k
第一次循环 log23 3
第二次循环 log23log34 4
第三次循环 log23log34log45 5
第四次循环 log23log34log45log56 6
第五次循环 log23log34log45log56log67 7
第六次循环 log23log34log45log56log67log78=log28=3 8
故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.
故选B.
【考点精析】利用程序框图对题目进行判断即可得到答案,需要熟知程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,有两条相交成60°角的直线,交点为.甲、乙分别在上,起初甲离,乙离,后来甲沿的方向,乙沿的方向,同时以的速度步行.求:

1)起初两人的距离是多少?

2后两人的距离是多少?

3)什么时候两人的距离最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩下的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:

日需求量

频数

天记录的各日需求量的频率代替各日需求量的概率.

(1)求该超市水果日需求量(单位:千克)的分布列;

(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形的边长为2,将它沿高翻折,使点与点间的距离为1,此时四面体外接球的表面积是________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.

广告投入/万元

1

2

3

4

5

销售收益/万元

2

3

2

5

7

(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;

(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:

表中的数据显示之间存在线性相关关系,求关于的回归方程;

(Ⅲ)若广告投入万元时,实际销售收益为万元,求残差.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=sinx++sinx-+2cos2ωx,其中ω0,且函数fx)的最小正周期为π

1)求ω的值;

2)求fx)的单调增区间

3)若函数gx=fx-a在区间[-]上有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于直线以及平面,下面命题中正确的是( )

A. ,则

B. ,则

C. ,则

D. ,且,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对正整数n,记In={1,2,3…,n},Pn={ |m∈In , k∈In}.
(1)求集合P7中元素的个数;
(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)对任意实数xy恒有fx+y)=fx+fy)且当x0fx)<0

给出下列四个结论:

f0)=0 fx)为偶函数;

fx)为R上减函数; fx)为R上增函数.

其中正确的结论是(  )

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

同步练习册答案